178 research outputs found
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of flavor symmetry. Our model contains singlet matter chiral superfields which are arranged as triplet of
and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability
The presence of right-handed neutrinos in the type I seesaw mechanism may
lead to significant corrections to the RG evolution of the Higgs self-coupling.
Compared to the Standard Model case, the Higgs mass window can become narrower,
and the cutoff scale become lower. Naively, these effects decrease with
decreasing right-handed neutrino mass. However, we point out that the unknown
Dirac Yukawa matrix may impact the vacuum stability constraints even in the low
scale seesaw case not far away from the electroweak scale, hence much below the
canonical seesaw scale of 10^15 GeV. This includes situations in which
production of right-handed neutrinos at colliders is possible. We illustrate
this within a particular parametrization of the Dirac Yukawas and with explicit
low scale seesaw models. We also note the effect of massive neutrinos on the
top quark Yukawa coupling, whose high energy value can be increased with
respect to the Standard Model case.Comment: 17 pages, 7 figures, minor revisions, version to appear in JHE
Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory
The impact of heavy mediators on neutrino oscillations is typically described
by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We
focus on leptonic dimension-six effective operators which do not produce
charged lepton flavor violation. These operators lead to particular
correlations among neutrino production, propagation, and detection non-standard
effects. We point out that these NSIs and NU phenomenologically lead, in fact,
to very similar effects for a neutrino factory, for completely different
fundamental reasons. We discuss how the parameters and probabilities are
related in this case, and compare the sensitivities. We demonstrate that the
NSIs and NU can, in principle, be distinguished for large enough effects at the
example of non-standard effects in the --sector, which basically
corresponds to differentiating between scalars and fermions as heavy mediators
as leading order effect. However, we find that a near detector at superbeams
could provide very synergistic information, since the correlation between
source and matter NSIs is broken for hadronic neutrino production, while NU is
a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq.
(27) correcte
Radiative contribution to neutrino masses and mixing in SSM
In an extension of the minimal supersymmetric standard model (popularly known
as the SSM), three right handed neutrino superfields are introduced to
solve the -problem and to accommodate the non-vanishing neutrino masses
and mixing. Neutrino masses at the tree level are generated through parity
violation and seesaw mechanism. We have analyzed the full effect of one-loop
contributions to the neutrino mass matrix. We show that the current three
flavour global neutrino data can be accommodated in the SSM, for both
the tree level and one-loop corrected analyses. We find that it is relatively
easier to accommodate the normal hierarchical mass pattern compared to the
inverted hierarchical or quasi-degenerate case, when one-loop corrections are
included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other
minor changes, references adde
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program
Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN programme can extend existing bounds on well constrained channels such as N → νl+l− and N → l±π∓ while, thanks to the strong particle identification capabilities of liquid-Argon technology, also place bounds on often neglected channels such as N → νγ and N → νπ0. Furthermore, we consider the phenomenological impact of improved event timing information at the three detectors. As well as considering its role in background reduction, we note that if the light-detection systems in SBND and ICARUS can achieve nanosecond timing resolution, the effect of finite sterile neutrino mass could be directly observable, providing a smoking-gun signature for this class of models. We stress throughout that the search for heavy nearly-sterile neutrinos is a complementary new physics analysis to the search for eV-scale oscillations, and would extend the BSM programme of SBN while requiring no beam or detector modifications
Novel Structurally Designed Vaccine for S. aureus α-Hemolysin: Protection against Bacteremia and Pneumonia
Staphylococcus aureus (S. aureus) is a human pathogen associated with skin and soft tissue infections (SSTI) and life threatening sepsis and pneumonia. Efforts to develop effective vaccines against S. aureus have been largely unsuccessful, in part due to the variety of virulence factors produced by this organism. S. aureus alpha-hemolysin (Hla) is a pore-forming toxin expressed by most S. aureus strains and reported to play a key role in the pathogenesis of SSTI and pneumonia. Here we report a novel recombinant subunit vaccine candidate for Hla, rationally designed based on the heptameric crystal structure. This vaccine candidate, denoted AT-62aa, was tested in pneumonia and bacteremia infection models using S. aureus strain Newman and the pandemic strain USA300 (LAC). Significant protection from lethal bacteremia/sepsis and pneumonia was observed upon vaccination with AT-62aa along with a Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE) that is currently in clinical trials. Passive transfer of rabbit immunoglobulin against AT-62aa (AT62-IgG) protected mice against intraperitoneal and intranasal challenge with USA300 and produced significant reduction in bacterial burden in blood, spleen, kidney, and lungs. Our Hla-based vaccine is the first to be reported to reduce bacterial dissemination and to provide protection in a sepsis model of S. aureus infection. AT62-IgG and sera from vaccinated mice effectively neutralized the toxin in vitro and AT62-IgG inhibited the formation of Hla heptamers, suggesting antibody-mediated neutralization as the primary mechanism of action. This remarkable efficacy makes this Hla-based vaccine a prime candidate for inclusion in future multivalent S. aureus vaccine. Furthermore, identification of protective epitopes within AT-62aa could lead to novel immunotherapy for S. aureus infection
Probing non-standard interactions at Daya Bay
In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by theta(13), making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and theta(13) that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds similar to 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude
Deficiency in type 1 insulin-like growth factor receptor in mice protects against oxygen-induced lung injury
BACKGROUND: Cellular responses to aging and oxidative stress are regulated by type 1 insulin-like growth factor receptor (IGF-1R). Oxidant injury, which is implicated in the pathophysiology of a number of respiratory diseases, acutely upregulates IGF-1R expression in the lung. This led us to suspect that reduction of IGF-1R levels in lung tissue could prevent deleterious effects of oxygen exposure. METHODS: Since IGF-1R null mutant mice die at birth from respiratory failure, we generated compound heterozygous mice harboring a hypomorphic (Igf-1r(neo)) and a knockout (Igf-1r(-)) receptor allele. These IGF-1R(neo/- )mice, strongly deficient in IGF-1R, were subjected to hyperoxia and analyzed for survival time, ventilatory control, pulmonary histopathology, morphometry, lung edema and vascular permeability. RESULTS: Strikingly, after 72 h of exposure to 90% O(2), IGF-1R(neo/- )mice had a significantly better survival rate during recovery than IGF-1R(+/+ )mice (77% versus 53%, P < 0.05). The pulmonary injury was consistently, and significantly, milder in IGF-1R(neo/- )mice which developed conspicuously less edema and vascular extravasation than controls. Also, hyperoxia-induced abnormal pattern of breathing which precipitated respiratory failure was elicited less frequently in the IGF-1R(neo/- )mice. CONCLUSION: Together, these data demonstrate that a decrease in IGF-1R signaling in mice protects against oxidant-induced lung injury
Antibacterial activity of some selected medicinal plants of Pakistan
<p>Abstract</p> <p>Background</p> <p>Screening of the ethnobotenical plants is a pre-requisite to evaluate their therapeutic potential and it can lead to the isolation of new bioactive compounds.</p> <p>Methods</p> <p>The crude extracts and fractions of six medicinal important plants (<it>Arisaema flavum</it>, <it>Debregeasia salicifolia</it>, <it>Carissa opaca</it>, <it>Pistacia integerrima</it>, <it>Aesculus indica</it>, and <it>Toona ciliata</it>) were tested against three Gram positive and two Gram negative ATCC bacterial species using the agar well diffusion method.</p> <p>Results</p> <p>The crude extract of <it>P. integerrima </it>and <it>A. indica </it>were active against all tested bacterial strains (12-23 mm zone of inhibition). Other four plant's crude extracts (<it>Arisaema flavum</it>, <it>Debregeasia salicifolia</it>, <it>Carissa opaca</it>, and <it>Toona ciliata</it>) were active against different bacterial strains. The crude extracts showed varying level of bactericidal activity. The aqueous fractions of <it>A. indica </it>and <it>P. integerrima </it>crude extract showed maximum activity (19.66 and 16 mm, respectively) against <it>B. subtilis</it>, while the chloroform fractions of <it>T. ciliata </it>and <it>D. salicifolia </it>presented good antibacterial activities (13-17 mm zone of inhibition) against all the bacterial cultures tested.</p> <p>Conclusion</p> <p>The methanol fraction of <it>Pistacia integerrima</it>, chloroform fractions of <it>Debregeasia salicifolia </it>&<it>Toona ciliata </it>and aqueous fraction of <it>Aesculus indica </it>are suitable candidates for the development of novel antibacterial compounds.</p
- …