56 research outputs found

    Spatiotemporal variation of the epifaunal assemblages associated to Sargassum muticum on the NW Atlantic coast of Morocco

    Get PDF
    Epifaunal assemblages inhabiting the non-indigenous macroalga Sargassum muticum (Yendo) Fensholt were investigated on two physically distinct intertidal rocky (S1) and sandy (S2) sites along the Atlantic coast of Morocco. The objective of this study was to test whether the habitat-forming marine alga S. muticum invasive in these sites supported different epifaunal assemblages under different environmental conditions and through time. The gastropods Steromphala umbilicalis, S. pennanti, and Rissoa parva and the isopod Dynamene bidentata were the most contributive species to the dissimilarity of epifaunal assemblage structure between both sites throughout seasons. SIMPER analysis showed a dissimilarity of 58.3-78.5% in the associated species composition of S. muticum between study sites with respect to sampling season. Species diversity and total abundance were significantly higher at the rocky site compared to the sandy site. PERMANOVA analyses showed significant differences of associated epifaunal assemblage structure for the season and site interaction. Accordingly, site and season were determinant factors conditioning the role of habitat in structuring epifaunal assemblages.info:eu-repo/semantics/publishedVersio

    A cluster randomised controlled trial of the community effectiveness of two interventions in rural Malawi to improve health care and to reduce maternal, newborn and infant mortality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The UN Millennium Development Goals call for substantial reductions in maternal and child mortality, to be achieved through reductions in morbidity and mortality during pregnancy, delivery, postpartum and early childhood. The MaiMwana Project aims to test community-based interventions that tackle maternal and child health problems through increasing awareness and local action.</p> <p>Methods/Design</p> <p>This study uses a two-by-two factorial cluster-randomised controlled trial design to test the impact of two interventions. The impact of a community mobilisation intervention run through women's groups, on home care, health care-seeking behaviours and maternal and infant mortality, will be tested. The impact of a volunteer-led infant feeding and care support intervention, on rates of exclusive breastfeeding, uptake of HIV-prevention services and infant mortality, will also be tested. The women's group intervention will employ local female facilitators to guide women's groups through a four-phase cycle of problem identification and prioritisation, strategy identification, implementation and evaluation. Meetings will be held monthly at village level. The infant feeding intervention will select local volunteers to provide advice and support for breastfeeding, birth preparedness, newborn care and immunisation. They will visit pregnant and new mothers in their homes five times during and after pregnancy.</p> <p>The unit of intervention allocation will be clusters of rural villages of 2500-4000 population. 48 clusters have been defined and randomly allocated to either women's groups only, infant feeding support only, both interventions, or no intervention. Study villages are surrounded by 'buffer areas' of non-study villages to reduce contamination between intervention and control areas. Outcome indicators will be measured through a demographic surveillance system. Primary outcomes will be maternal, infant, neonatal and perinatal mortality for the women's group intervention, and exclusive breastfeeding rates and infant mortality for the infant feeding intervention.</p> <p>Structured interviews will be conducted with mothers one-month and six-months after birth to collect detailed quantitative data on care practices and health-care-seeking. Further qualitative, quantitative and economic data will be collected for process and economic evaluations.</p> <p>Trial registration</p> <p>ISRCTN06477126</p

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Exercise and bone health across the lifespan

    Get PDF
    With ageing, bone tissue undergoes significant compositional, architectural and metabolic alterations potentially leading to osteoporosis. Osteoporosis is the most prevalent bone disorder, which is characterised by progressive bone weakening and an increased risk of fragility fractures. Although this metabolic disease is conventionally associated with ageing and menopause, the predisposing factors are thought to be established during childhood and adolescence. In light of this, exercise interventions implemented during maturation are likely to be highly beneficial as part of a long-term strategy to maximise peak bone mass and hence delay the onset of age- or menopause-related osteoporosis. This notion is supported by data on exercise interventions implemented during childhood and adolescence, which confirmed that weight-bearing activity, particularly if undertaken during peripubertal development, is capable of generating a significant osteogenic response leading to bone anabolism. Recent work on human ageing and epigenetics suggests that undertaking exercise after the fourth decade of life is still important, given the anti-ageing effect and health benefits provided, potentially occurring via a delay in telomere shortening and modification of DNA methylation patterns associated with ageing. Exercise is among the primary modifiable factors capable of influencing bone health by preserving bone mass and strength, preventing the death of bone cells and anti-ageing action provided

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family.

    Get PDF
    The synucleins (α, β, and γ) are highly homologous proteins thought to play a role in regulating neurotransmission and are found abundantly in presynaptic terminals. To overcome functional overlap between synuclein proteins and to understand their role in presynaptic signaling from mesostriatal dopaminergic neurons, we produced mice lacking all three members of the synuclein family. The effect on the mesostriatal system was assessed in adult (4- to 14-month-old) animals using a combination of behavioral, biochemical, histological, and electrochemical techniques. Adult triple-synuclein-null (TKO) mice displayed no overt phenotype and no change in the number of midbrain dopaminergic neurons. TKO mice were hyperactive in novel environments and exhibited elevated evoked release of dopamine in the striatum detected with fast-scan cyclic voltammetry. Elevated dopamine release was specific to the dorsal not ventral striatum and was accompanied by a decrease of dopamine tissue content. We confirmed a normal synaptic ultrastructure and a normal abundance of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes in the dorsal striatum. Treatment of TKO animals with drugs affecting dopamine metabolism revealed normal rate of synthesis, enhanced turnover, and reduced presynaptic striatal dopamine stores. Our data uniquely reveal the importance of the synuclein proteins in regulating neurotransmitter release from specific populations of midbrain dopamine neurons through mechanisms that differ from those reported in other neurons. The finding that the complete loss of synucleins leads to changes in dopamine handling by presynaptic terminals specifically in those regions preferentially vulnerable in Parkinson's disease may ultimately inform on the selectivity of the disease process

    Tachykinin-Immunoreactive Neurons in Developing Feline Neostriatum: Somatodendritic Morphogenesis Demonstrated by Combined Immunohistochemistry/Golgi Impregnation-Gold Toning

    No full text
    This investigation was designed to survey and characterize the development of a key link between chemically mediated neurotransmission and neuronal cytoarchitecture in mammalian basal ganglia. Peroxidase immunohistochemical and Golgi impregnation/gold toning methods were combined to doubly label the tachykinin neuromodulator signature and somatodendritic structure of neostriatal neurons in late fetal, postnatal and adult cats. The results supported 3 conclusions of considerable significance. (1) Colocalization of immunohistochemical and Golgi impregnation/gold toning labels is a feasible, rational and productive means to identify and determine the somatodendritic morphogenesis of tachykinin neurons. (2) The application of this method to developing feline neostriatum demonstrates directly that the principal tachykinin cells are medium-sized spiny neurons, which undergo progressive growth and elaboration of cell bodies, dendritic arbors and dendritic spines during the late fetal and postnatal periods. (3) There is a strong but incomplete concordance between tachykinin and medium-sized spiny neuronal phenotypes, because a minor variant of medium-sized spiny neurons and rare subgroups of medium- and large-sized sparse spiny neurons also show the tachykinin neuromodulator signature. Taken together, these results suggest that neostriatal neurons show an early commitment to heterogeneous tachykinin phenotypes, although the full and final expression of their somatodendritic characteristics coincides with synaptogenesis
    corecore