221 research outputs found
The sperm factor: paternal impact beyond genes
The fact that sperm carry more than the paternal DNA has only been discovered just over a decade ago. With this discovery, the idea that the paternal condition may have direct implications for the fitness of the offspring had to be revisited. While this idea is still highly debated, empirical evidence for paternal effects is accumulating. Male condition not only affects male fertility but also offspring early development and performance later in life. Several factors have been identified as possible carriers of non-genetic information, but we still know little about their origin and function and even less about their causation. I consider four possible non-mutually exclusive adaptive and non-adaptive explanations for the existence of paternal effects in an evolutionary context. In addition, I provide a brief overview of the main non-genetic components found in sperm including DNA methylation, chromatin modifications, RNAs and proteins. I discuss their putative functions and present currently available examples for their role in transferring non-genetic information from the father to the offspring. Finally, I identify some of the most important open questions and present possible future research avenues
Predicting the Electron Requirement for Carbon Fixation in Seas and Oceans
Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and 14C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e- (mol C)-1 with a mean of 10.9±6.91 mol e- mol C)-1. Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φe,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φe,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φe,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φe,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy. © 2013 Lawrenz et al
Movement and habitat use of the snapping turtle in an urban landscape
In order to effectively manage urban habitats, it is important to incorporate the spatial ecology and habitat use of the species utilizing them. Our previous studies have shown that the distribution of upland habitats surrounding a highly urbanized wetland habitat, the Central Canal (Indianapolis, IN, USA) influences the distribution of map turtles (Graptemys geographica) and red-eared sliders (Trachemys scripta) during both the active season and hibernation. In this study we detail the movements and habitat use of another prominent member of the Central Canal turtle assemblage, the common snapping turtle, Chelydra serpentina. We find the same major upland habitat associations for C. serpentina as for G. geographica and T. scripta, despite major differences in their activity (e.g., C. serpentina do not regularly engage in aerial basking). These results reinforce the importance of recognizing the connection between aquatic and surrounding terrestrial habitats, especially in urban ecosystems
Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study
BACKGROUND: The objective of this study was to assess the status of oxidative stress in term small for gestational age (SGA) newborn infants born to undernourished mothers by estimating levels of erythrocyte superoxide dismutase (SOD), catalase, reduced glutathione, and serum malondialdehyde (MDA) in cord blood and comparing them to healthy appropriate for gestational age (AGA) controls. This was done in a case control design at a tertiary level teaching hospital. METHODS: We included 20 singleton healthy SGA newborn infants born between 38–40 weeks to undernourished mothers with a) post-pregnancy weight < 50 kg or height < 145 cm AND b) hemoglobin < 8.0 g/dL or serum albumin < 2.5 g/dL. An equal number of age and sex matched AGA newborn infants born to healthy mothers served as Controls. Mothers with other risk factors and newborns with complications during delivery or immediate newborn period were excluded. MDA, SOD, catalase and reduced glutathione were measured in the cord blood of all neonates and compared between the groups (unpaired t test); levels were also correlated to maternal weight, height, hemoglobin, and albumin by both univariate (pearsonian correlation) and multivariate (multiple regression) analysis. RESULTS: The activity of MDA was increased (5.33 ± 0.72 vs 2.55 ± 0.22 nmol/mL; P < 0.0001) while levels of superoxide dismutase (493.6 ± 54.9 vs. 786.8 ± 79.1 U/g Hb; P < 0.0001), catalase (1.48 ± 0.24 vs. 2.31 ± 0.20 U/g Hb; P < 0.0001) and reduced glutathione (2.84 ± 0.37 vs 6.42 ± 0.23 Umol/g Hb, P < 0.0001) were decreased in term SGA born to undernourished mothers as compared to term AGA born to healthy mothers. On univariate analysis, all the markers of oxidative stress correlated significantly with maternal parameters (P < 0.005). On multivariate analysis, maternal albumin and hemoglobin accounted for maximum correlation with the markers of oxidative stress. CONCLUSIONS: Intrauterine malnutrition is associated with significant oxidative stress in small for gestational age neonates born at term to malnourished mothers
Societal-level versus individual-level predictions of ethical behavior: a 48-society study of collectivism and individualism
Is the societal-level of analysis sufficient today to understand the values of those in the global workforce? Or are individual-level analyses more appropriate for assessing the influence of values on ethical behaviors across country workforces? Using multi-level analyses for a 48-society sample, we test the utility of both the societal-level and individual-level dimensions of collectivism and individualism values for predicting ethical behaviors of business professionals. Our values-based behavioral analysis indicates that values at the individual-level make a more significant contribution to explaining variance in ethical behaviors than do values at the societal-level. Implicitly, our findings question the soundness of using societal-level values measures. Implications for international business research are discussed
Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review.
PURPOSE.—:Clinical use of analytical tests to assess genomic variants in circulating tumor DNA (ctDNA) is increasing. This joint review from the American Society of Clinical Oncology and the College of American Pathologists summarizes current information about clinical ctDNA assays and provides a framework for future research. METHODS.—:An Expert Panel conducted a literature review on the use of ctDNA assays for solid tumors, including preanalytical variables, analytical validity, interpretation and reporting, and clinical validity and utility. RESULTS.—:The literature search identified 1338 references. Of those, 390, plus 31 references supplied by the Expert Panel, were selected for full-text review. There were 77 articles selected for inclusion. CONCLUSIONS.—:The evidence indicates that testing for ctDNA is optimally performed on plasma collected in cell stabilization or EDTA tubes, with EDTA tubes processed within 6 hours of collection. Some ctDNA assays have demonstrated clinical validity and utility with certain types of advanced cancer; however, there is insufficient evidence of clinical validity and utility for the majority of ctDNA assays in advanced cancer. Evidence shows discordance between the results of ctDNA assays and genotyping tumor specimens, and supports tumor tissue genotyping to confirm undetected results from ctDNA tests. There is no evidence of clinical utility and little evidence of clinical validity of ctDNA assays in early-stage cancer, treatment monitoring, or residual disease detection. There is no evidence of clinical validity or clinical utility to suggest that ctDNA assays are useful for cancer screening, outside of a clinical trial. Given the rapid pace of research, reevaluation of the literature will shortly be required, along with the development of tools and guidance for clinical practice
Differential expression of members of the E2F family of transcription factors in rodent testes
BACKGROUND: The E2F family of transcription factors is required for the activation or repression of differentially expressed gene programs during the cell cycle in normal and abnormal development of tissues. We previously determined that members of the retinoblastoma protein family that interacts with the E2F family are differentially expressed and localized in almost all the different cell types and tissues of the testis and in response to known endocrine disruptors. In this study, the cell-specific and stage-specific expression of members of the E2F proteins has been elucidated. METHODS: We used immunohistochemical (IHC) analysis of tissue sections and Western blot analysis of proteins, from whole testis and microdissected stages of seminiferous tubules to study the differential expression of the E2F proteins. RESULTS: For most of the five E2F family members studied, the localizations appear conserved in the two most commonly studied rodent models, mice and rats, with some notable differences. Comparisons between wild type and E2F-1 knockout mice revealed that the level of E2F-1 protein is stage-specific and most abundant in leptotene to early pachytene spermatocytes of stages IX to XI of mouse while strong staining of E2F-1 in some cells close to the basal lamina of rat tubules suggest that it may also be expressed in undifferentiated spermatogonia. The age-dependent development of a Sertoli-cell-only phenotype in seminiferous tubules of E2F-1 knockout males corroborates this, and indicates that E2F-1 is required for spermatogonial stem cell renewal. Interestingly, E2F-3 appears in both terminally differentiated Sertoli cells, as well as spermatogonial cells in the differentiative pathway, while the remaining member of the activating E2Fs, E2F-2 is most concentrated in spermatocytes of mid to late prophase of meiosis. Comparisons between wildtype and E2F-4 knockout mice demonstrated that the level of E2F-4 protein displays a distinct profile of stage-specificity compared to E2F-1, which is probably related to its prevalence and role in Sertoli cells. IHC of rat testis indicates that localization of E2F-5 is distinct from that of E2F-4 and overlaps those of E2F-1 and E2F-2. CONCLUSION: The E2F-1 represents the subfamily of transcription factors required during stages of DNA replication and gene expression for development of germ cells and the E2F-4 represents the subfamily of transcription factors that help maintain gene expression for a terminally differentiated state within the testis
- …
