2,095 research outputs found

    Conflict-free connection numbers of line graphs

    Full text link
    A path in an edge-colored graph is called \emph{conflict-free} if it contains at least one color used on exactly one of its edges. An edge-colored graph GG is \emph{conflict-free connected} if for any two distinct vertices of GG, there is a conflict-free path connecting them. For a connected graph GG, the \emph{conflict-free connection number} of GG, denoted by cfc(G)cfc(G), is defined as the minimum number of colors that are required to make GG conflict-free connected. In this paper, we investigate the conflict-free connection numbers of connected claw-free graphs, especially line graphs. We first show that for an arbitrary connected graph GG, there exists a positive integer kk such that cfc(Lk(G))2cfc(L^k(G))\leq 2. Secondly, we get the exact value of the conflict-free connection number of a connected claw-free graph, especially a connected line graph. Thirdly, we prove that for an arbitrary connected graph GG and an arbitrary positive integer kk, we always have cfc(Lk+1(G))cfc(Lk(G))cfc(L^{k+1}(G))\leq cfc(L^k(G)), with only the exception that GG is isomorphic to a star of order at least~55 and k=1k=1. Finally, we obtain the exact values of cfc(Lk(G))cfc(L^k(G)), and use them as an efficient tool to get the smallest nonnegative integer k0k_0 such that cfc(Lk0(G))=2cfc(L^{k_0}(G))=2.Comment: 11 page

    Building up or out? Disparate sequence architectures along an active rift margin—Corinth rift, Greece

    Get PDF
    Early Pleistocene synrift deltas developed along the southern Corinth rift margin were deposited in a single, dominantly lacustrine depocenter and were subject to the same climate-related base-level and sediment supply cyclicity. Two synrift deltas, just 50 km apart, show markedly different sequence geometry and evolution related to their location along the evolving border fault. In the west, strongly aggradational fan deltas (>600 m thick; 2–4 km radius) deposited in the immediate hanging wall of the active border fault comprise stacked 30–100-m-thick stratal units bounded by flooding surfaces. Each unit evolves from aggradational to progradational with no evidence for abrupt subaerial exposure or fluvial incision. In contrast, in the central rift, the border fault propagated upward into an already deep lacustrine environment, locating rift-margin deltas 15 km into the footwall. The deltas here have a radius of >9 km and comprise northward downstepping and offlapping units, 50–200 m thick, that unconformably overlie older synrift sediments and are themselves incised. The key factors driving the marked variation in sequence stratigraphic architecture are: (1) differential uplift and subsidence related to position with respect to the border fault system, and (2) inherited topography that influenced shoreline position and offshore bathymetry. Our work illustrates that stratal units and their bounding surfaces may have only local (<10 km) extent, highlighting the uncertainty involved in assigning chronostratigraphic significance to systems tracts and in calculating base-level changes from stratigraphy where marked spatial variations in uplift and subsidence occur

    The diagnosis of mental disorders: the problem of reification

    Get PDF
    A pressing need for interrater reliability in the diagnosis of mental disorders emerged during the mid-twentieth century, prompted in part by the development of diverse new treatments. The Diagnostic and Statistical Manual of Mental Disorders (DSM), third edition answered this need by introducing operationalized diagnostic criteria that were field-tested for interrater reliability. Unfortunately, the focus on reliability came at a time when the scientific understanding of mental disorders was embryonic and could not yield valid disease definitions. Based on accreting problems with the current DSM-fourth edition (DSM-IV) classification, it is apparent that validity will not be achieved simply by refining criteria for existing disorders or by the addition of new disorders. Yet DSM-IV diagnostic criteria dominate thinking about mental disorders in clinical practice, research, treatment development, and law. As a result, the modernDSMsystem, intended to create a shared language, also creates epistemic blinders that impede progress toward valid diagnoses. Insights that are beginning to emerge from psychology, neuroscience, and genetics suggest possible strategies for moving forward

    The impact of predation by marine mammals on Patagonian toothfish longline fisheries

    Get PDF
    Predatory interaction of marine mammals with longline fisheries is observed globally, leading to partial or complete loss of the catch and in some parts of the world to considerable financial loss. Depredation can also create additional unrecorded fishing mortality of a stock and has the potential to introduce bias to stock assessments. Here we aim to characterise depredation in the Patagonian toothfish (Dissostichus eleginoides) fishery around South Georgia focusing on the spatio-temporal component of these interactions. Antarctic fur seals (Arctocephalus gazella), sperm whales (Physeter macrocephalus), and orcas (Orcinus orca) frequently feed on fish hooked on longlines around South Georgia. A third of longlines encounter sperm whales, but loss of catch due to sperm whales is insignificant when compared to that due to orcas, which interact with only 5% of longlines but can take more than half of the catch in some cases. Orca depredation around South Georgia is spatially limited and focused in areas of putative migration routes, and the impact is compounded as a result of the fishery also concentrating in those areas at those times. Understanding the seasonal behaviour of orcas and the spatial and temporal distribution of “depredation hot spots” can reduce marine mammal interactions, will improve assessment and management of the stock and contribute to increased operational efficiency of the fishery. Such information is valuable in the effort to resolve the human-mammal conflict for resources

    Duality relations for the ASEP conditioned on a low current

    Full text link
    We consider the asymmetric simple exclusion process (ASEP) on a finite lattice with periodic boundary conditions, conditioned to carry an atypically low current. For an infinite discrete set of currents, parametrized by the driving strength sKs_K, K1K \geq 1, we prove duality relations which arise from the quantum algebra Uq[gl(2)]U_q[\mathfrak{gl}(2)] symmetry of the generator of the process with reflecting boundary conditions. Using these duality relations we prove on microscopic level a travelling-wave property of the conditioned process for a family of shock-antishock measures for N>KN>K particles: If the initial measure is a member of this family with KK microscopic shocks at positions (x1,,xK)(x_1,\dots,x_K), then the measure at any time t>0t>0 of the process with driving strength sKs_K is a convex combination of such measures with shocks at positions (y1,,yK)(y_1,\dots,y_K). which can be expressed in terms of KK-particle transition probabilities of the conditioned ASEP with driving strength sNs_N.Comment: 26 page

    Station Assignment with Applications to Sensing

    Full text link
    Abstract. We study an allocation problem that arises in various scenarios. For instance, a health monitoring system where ambulatory patients carry sensors that must periodically upload physiological data. Another example is participatory sensing, where communities of mobile device users upload periodically information about their environment. We assume that devices or sensors (generically called clients) join and leave the system continuously, and they must upload/download data to static devices (or base stations), via radio transmissions. The mobility of clients, the limited range of transmission, and the possibly ephemeral nature of the clients are modeled by characterizing each client with a life interval and a stations group, so that different clients may or may not coincide in time and/or stations to connect. The intrinsically shared nature of the access to base stations is modeled by introducing a maximum station bandwidth that is shared among its connected clients, a client laxity, which bounds the maximum time that an active client is not transmitting to some base station, and a client bandwidth, which bounds the minimum bandwidth that a client requires in each transmission. Under the model described, we study the problem of assigning clients to base stations so that every client transmits to some station in its group, limited by laxities and bandwidths. We call this problem the Station Assignment problem. We study the impact of the rate and burstiness of the arrival of clients on the solvability of Station Assignment. To carry out a worst-case analysis we use a typical adversarial methodology: we assume the presence of an adversary that controls the arrival and departure of clients. The adversar

    Male Wistar rats show individual differences in an animal model of conformity

    Get PDF
    Conformity refers to the act of changing one’s behaviour to match that of others. Recent studies in humans have shown that individual differences exist in conformity and that these differences are related to differences in neuronal activity. To understand the neuronal mechanisms in more detail, animal tests to assess conformity are needed. Here, we used a test of conformity in rats that has previously been evaluated in female, but not male, rats and assessed the nature of individual differences in conformity. Male Wistar rats were given the opportunity to learn that two diets differed in palatability. They were subsequently exposed to a demonstrator that had consumed the less palatable food. Thereafter, they were exposed to the same diets again. Just like female rats, male rats decreased their preference for the more palatable food after interaction with demonstrator rats that had eaten the less palatable food. Individual differences existed for this shift, which were only weakly related to an interaction between their own initial preference and the amount consumed by the demonstrator rat. The data show that this conformity test in rats is a promising tool to study the neurobiology of conformity

    Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system

    Get PDF
    © 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system

    Accreting Protoplanets in the LkCa 15 Transition Disk

    Full text link
    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{\alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item
    corecore