38 research outputs found

    Rapid motion adaptation reveals the temporal dynamics of spatiotemporal correlation between ON and OFF pathways

    Get PDF
    At the early stages of visual processing, information is processed by two major thalamic pathways encoding brightness increments (ON) and decrements (OFF). Accumulating evidence suggests that these pathways interact and merge as early as in primary visual cortex. Using regular and reverse-phi motion in a rapid adaptation paradigm, we investigated the temporal dynamics of within and across pathway mechanisms for motion processing. When the adaptation duration was short (188 ms), reverse-phi and regular motion led to similar adaptation effects, suggesting that the information from the two pathways are combined efficiently at early-stages of motion processing. However, as the adaption duration was increased to 752 ms, reverse-phi and regular motion showed distinct adaptation effects depending on the test pattern used, either engaging spatiotemporal correlation between the same or opposite contrast polarities. Overall, these findings indicate that spatiotemporal correlation within and across ON-OFF pathways for motion processing can be selectively adapted, and support those models that integrate within and across pathway mechanisms for motion processing

    Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death

    Get PDF
    The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201

    Low level constraints on dynamic contour path integration

    Get PDF
    Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar) in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°), temporal (200ms), colour (over 10 colours) and luminance (-25% to 25%) information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections

    Neuroadaptations in Human Chronic Alcoholics: Dysregulation of the NF-κB System

    Get PDF
    Anna Ökvist is with Karolinska Institute, Sofia Johansson is with Karolinska Institute, Alexander Kuzmin is with Karolinska Institute, Igor Bazov is with Karolinska Institute, Roxana Merino-Martinez is with Karolinska Institute, Igor Ponomarev is with UT Austin, R. Dayne Mayfield is with UT Austin, R. Adron Harris is with UT Austin, Donna Sheedy is with University of Sydney, Therese Garrick is with University of Sydney, Clive Harper is with University of Sydney, Yasmin L. Hurd is with Mount Sinai School of Medicine, Lars Terenius is with Karolinska Institute, Tomas J. Ekström is with Karolinska Institute, Georgy Bakalkin is with Karolinska Institute and Uppsala University, Tatjana Yakovleva is with Karolinska Institute and Uppsala University.Background -- Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings -- Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions -- We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.This work was supported by grants from the AFA Forsäkring to AK, YLH, TJE and GB, the Research Foundation of the Swedish Alcohol Retail Monopoly (SRA) and Karolinska Institutet to AK, TJE and GB, and the Swedish Science Research Council and the Swedish National Drug Policy Coordinator to GB. The Australian Brain Donor Programs NSW Tissue Resource Centre was supported by The University of Sydney, National Health and Medical Research Council of Australia, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health.Waggoner Center for Alcohol and Addiction Researc

    Adenosine A2A receptors: localization and function

    Get PDF
    Adenosine is an endogenous purine nucleoside present in all mammalian tissues, that originates from the breakdown of ATP. By binding to its four receptor subtypes (A1, A2A, A2B, and A3), adenosine regulates several important physiological functions at both the central and peripheral levels. Therefore, ligands for the different adenosine receptors are attracting increasing attention as new potential drugs to be used in the treatment of several diseases. This chapter is aimed at providing an overview of adenosine metabolism, adenosine receptors localization and their signal transduction pathways. Particular attention will be paid to the biochemistry and pharmacology of A2A receptors, since antagonists of these receptors have emerged as promising new drugs for the treatment of Parkinson's disease. The interactions of A2A receptors with other nonadenosinergic receptors, and the effects of the pharmacological manipulation of A2A receptors on different body organs will be discussed, together with the usefulness of A2A receptor antagonists for the treatment of Parkinson's disease and the potential adverse effects of these drugs

    Malnutrition as a risk factor for the development of pressure ulcers Desnutrición como factor de riesgo para el desarrollo de las úlceras por presión Desnutrição como fator de risco para o desenvolvimento de úlceras por pressão

    Get PDF
    Malnutrition - as a fundamental aspect both in genesis as in healing of pressure ulcers - is the object of this update paper. Countless studies point out that malnutrition, immune function alterations, hypoalbuminemia, low hemoglobin levels, as well as low diet intake, as responsible for an increase in the risk of developing these lesions. Therefore, it is essential to include the assessment of the nutrition status - monitoring of the calorie-protein intake and the difficulties to use the nutrients - in the prevention and treatment protocols of this type of chronic wound.<br>La desnutrición - como aspecto fundamental en la génesis y cicatrización de las úlceras por presión (UP) - es el tema de esta atualización. Muchos estudios destacan la desnutrición, los cambios del funcionamiento imunológico, la hipoalbuminemia, los bajos niveles de hemoglobina así como la baja aceptación alimentaria como los responsables del aumento del riesgo para el desarrollo de las UP. En conclusión, es fundamental incluir la evaluación del estado nutricional en los protocolos de prevención y tratamiento de las UP. Esa evaluación debe incluir medidas objetivas, seguimiento de la ingestión calórica y protéica y además de las dificultades para el aprovechamiento de los nutrientes.<br>A desnutrição - como aspecto fundamental tanto na gênese como na cicatrização das úlceras por pressão - é objeto deste artigo de atualização. Inúmeros estudos salientam a desnutrição, alterações da função imune, hipoalbuminemia, níveis baixos de hemoglobina bem como a baixa aceitação dietética como responsáveis por aumentar o risco para o desenvolvimento dessas lesões. É, portanto, fundamental incluir a avaliação do estado nutricional - monitorização da ingestão calórico-protéica e das dificuldades para o aproveitamento dos nutrientes nos protocolos de prevenção e tratamento desse tipo de ferida crônica
    corecore