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Abstract 

Adenosine is an endogenous purine nucleoside present in all mammalian tissues, that 

originates from the breakdown of ATP. By binding to its four receptor subtypes (A1, A2A, A2B, and 

A3), adenosine regulates several important physiological functions at both the central and peripheral 

levels. Therefore, ligands for the different adenosine receptors are increasingly attracting attention 

as new potential drugs to be used in the treatment of several diseases.  

This chapter is aimed at providing an overview of adenosine metabolism, adenosine 

receptors localization, and their signal transduction pathways. Particular attention will be paid to the 

biochemistry and pharmacology of A2A receptors, since antagonists of these receptors have emerged 

as promising new drugs for the treatment of Parkinson’s disease. The interactions of A2A receptors 

with other non-adenosinergic receptors, and the effects of the pharmacological manipulation of A2A 

receptors on different body organs will be discussed, together with the usefulness of A2A receptor 

antagonists for the treatment of Parkinson’s disease and  the potential adverse effects of these drugs.  
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1. Introduction  

The concept of purinergic neurotransmission was first introduced by Burnstock in 1972 and 

subsequently adenosine 5' triphosphate (ATP) was shown to act either as a transmitter or  a co-

transmitter in most nerves in both the peripheral and central nervous system (CNS) (Abbracchio and 

Burnstock, 1998, Abbracchio et al., 2008, Burnstock, 1972, 2013). At present, it is known that ATP 

acts as a fast excitatory neurotransmitter or neuromodulator, and has potent long-term trophic role 

in cell proliferation, growth, and development, as well as in disease and cytotoxicity (Abbracchio 

and Burnstock 1998, Abbracchio et al., 2008, Burnstock, 2013). 

ATP and other nucleotides are stored in secretory and synaptic vesicles, and exocytotic 

vesicular release of ATP from neurons and astrocytes is well established (Pankratov et al., 2006, 

2007, Bowser and Khakh, 2007, Abbracchio et al., 2008, Burnstock, 2013). Evidences also exist 

indicating additional mechanisms of nucleotide release, including ATP-cassette transporters, 

connexin or pannexin hemichannels, plasmalemmal voltage-dependent anion channels and the 

ATP-sensitive P2X7 receptors (Abbracchio et al., 2008, Burnstock, 2013). After release, ATP and 

other nucleotides undergo rapid enzymatic degradation to adenosine by ectonucleotidases (Bonan, 

2012; Kovacs et al., 2013; Yegutkin, 2008; Zimmermann, 2006). 

 

2. Adenosine metabolism  

Adenosine, an endogenous purine ribonucleoside present in all mammalian tissues, modulates 

a variety of important synaptic processes and signaling pathways, and regulates the functions of 

several neurotransmitters in the CNS. Adenosine is considered a neuromodulator rather than a 

neurotransmitter, since it is not stored in synaptic vesicles, and is not released from nerve terminals 

during exocytosis. . Adenosine affects neural activity through multiple mechanisms; presynaptically 

by controlling neurotransmitter release, postsynaptically by hyperpolaryzing or depolarizing 

neurons, and non-synaptically mainly via regulatory effects on glial cells (Boison et al., 2010; Dare 

et al., 2007; Fredholm et al., 2005). Although adenosine is generally known to be produced by the 

ectoenzymatic breakdown of ATP, there might be a subpopulation of neurons and/or astrocytes that 

release adenosine directly in an activity-dependent manner (Wall and Dale, 2007).  

It is well established that adenosine may be formed in the CNS either intracelullarly after 

degradation of ATP to cyclic-adenosine monophosphate (cAMP) and 5’-AMP, and then transported 

by nucleotide transporters to the synapse, or extracellularly from nucleotides released into the 

synapse (Fig. 1). Thus, the formation of adenosine is dependent on the availability of oxygen and 



5 

 

energetic compounds, as well as on the rate of synthesis and degradation of ATP, released from 

both neuronal and glial cells. However, the major source of synaptic adenosine is the release of 

ATP from astrocytes, either vesicular  (Pasqual et al., 2005) or via secretion through hemichannels 

(Kang et al., 2008; Kawamura et al., 2010). Moreover, adenosine can be directly released through 

nucleoside transporters from astrocytes due to augmentation of intracellular adenosine in response 

to a variety of physiological and pathological stimuli (e.g. increased cellular activity, 

hypoxia/hypoglycemia, ischemia), and may function as nonsynaptic signaling molecule that 

diffuses far away from the site of origin and tonically influences neurotransmission, inflammation, 

and immune responses, as described below (Bours et al., 2006;  Dare et al., 2007; Geiger and Fyda, 

1991; Sperlagh and Vizi, 2011). 

 

2.1 Intracellular formation of adenosine  

The process of adenosine monophosphate (AMP) hydrolysis involves 5’-nucleotidase, which 

belongs to the family of enzymes called ectonucleotidases (Fig. 1, Kovacs et al., 2013; Yegutkin, 

2008). Seven types of 5’-nucleotidases have been cloned, characterized, and demonstrated in 

various tissues including brain tissue (Kovacs et al, 2013; Hunsucker et al., 2005). This pathway of 

adenosine formation from the catabolism of cytosolic ATP seems to represent a very sensitive 

signal of increased metabolic rate or metabolic stress (Latini and Pedata, 2001).  

Another  intracellular source of adenosine may be the hydrolysis of S-adenosylhomocysteine 

(SAH) by SAH hydrolase (Fig.1), an enzyme present in brain areas such as the neocortex, 

hippocampus, and cerebellum (Latini and Pedata 2001). However, this pathway is not strictly 

dependent upon the energetic state of the cells, and it does not significantly contribute to adenosine 

production in the brain under either physiological or ischemic conditions (Latini and Pedata 2001). 

 

2.2 Extracellular adenosine formation  

The extracellular nucleotide and nucleoside levels in the synaptic cleft are controlled by a 

cascade of enzymes, belonging to the family of ectonucleotidases. There are four major families of 

ectonucleotidases, namely ectonucleoside triphosphate diphospohydrolases (E-NTPDases), 

ectonucleotide pyrophosphatase/phosphodiesterases (E-NPPs), alkaline phosphatases, and ecto-5’-

nucleotidase (ecto-5’-NT) (Bonan 2012, Kovacs et al., 2013, Yegutkin, 2008; Zimmerman, 2006).  

The first step of ATP inactivation  is mediated by the family of E-NTPDases, which are able 

to hydrolyse ATP and adenosine diphosphate (ADP) to AMP (Zimmermann, 2006). Moreover, 

ATP can  be dephosphorylated by E-NPPs and alkaline phosphatases which, similarly to E-
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NTPDases, have widespread distribution in the CNS (Wang and Guidotti, 1998; Zimmermann, 

2006). The next step of extracellular inactivation is the hydrolysis of AMP to adenosine and 

phosphate by the ecto-5’-NT, also known as CD73 (Fig.1), which is attached via a GPI anchor to 

the extracellular membrane. Ecto-5’-NT, which is the rate-limiting step in the formation of 

adenosine (Sperlagh, 1996, Sperlagh and Vizi, 2007), is also widely expressed in the brain (e.g. in 

hippocampal and striatal nerve terminals), and it is predominantly associated to glial cells (Cunha et 

al., 1992; Hunsucker et al., 2005; James and Richardson, 1993; Kovacs et al., 2013; Schoen et al., 

1987).  

Another way of extracellular adenosine formation may be from the cAMP or 5'-AMP released 

into the synapse. Both these nucleotides are responsible for the slow change in the adenosine 

concentration; cAMP can be released through non-specific energy-dependent transporters and then, 

when in the synapse, it can first be converted to 5'-AMP by ecto-phosphodiesterases and then to 

adenosine by ecto-5'-NT. Another possibility also exists that the cAMP can be converted to 5'-AMP 

inside the cell and then 5'-AMP can be released into the synapse, becoming a source of adenosine 

(e.g. after the NMDA stimulation in cortical sections) (Latini and Pedata, 2001; Sperlagh and Vizi, 

2011). 

The process of extracellular adenosine formation is very fast, and occurs within seconds 

(Dunwiddie et al., 1997). Adenosine is normally present in a concentration between 30-300 nM, but 

under hypoxia or ischemia conditions adenosine concentrations in hippocampus can reach 20-30 

M (Dunwiddie et al., 1997; Latini et al., 1999). It seems that in vivo a large part of adenosine 

present in the synapse, under basal conditions comes from the extracellular metabolism of 

nucleotides (Latini and Pedata, 2001; Sperlagh and Vizi 2011). In contrast, numerous studies have 

suggested that in conditions of hypoxia or ischemia adenosine is mainly formed intracellularly and 

released to the synapse by transportes (Latini and Pedata, 2001; Sperlagh and Vizi, 2011). 

 

2.3 Nucleoside Transporters 

The level of extracellular adenosine is regulated by the process of bidirectional transport of 

nucleosides, which allows for rapid exchange between extra and intracellular levels of adenosine. In 

contrast to conventional neurotransmitters, the reuptake of adenosine does not depend on energy-

driven transporter-mediated systems. This transport is driven by chemical gradients and by 

unidirectional concentrative processes, driven by sodium electrochemical gradient (Dos Santos-

Rodrigues et al., 2014; Parkinson et al., 2011). There are two functionally distinct types of 

nucleoside transporters: 
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1) equilibrative nucleoside transporters (ENT), which predominate in the CNS, and carry both 

purine and pyrimidine nucleosides in both directions across cell membranes depending on their 

concentration gradient. Four types of ENT transporters have been characterized: ENT1-2-3-4; type 

1 and 2 appear to be present in all cell types, including neurons and glia (Baldwin et al., 2004; King 

et al., 2006; Dos Santos-Rodrigues et al., 2014; Parkinson et al., 2011).  

2) concentrative nucleosides transporters (CNT, sodium-dependent) which mediate the influx of 

nucleosides under the force of transmembrane sodium gradient (Dos Santos-Rodrigues et al., 2014; 

Latini and Pedata, 2001; Parkinson et al., 2011). Five subtypes of these transporters have been 

identified, and two types of CNT were cloned and detected in the rat brain, which are mainly 

present in the posterior hypothalamus, superior colliculus, brainstem, striatum, hippocampus, 

cerebellum and cortex (Anderson et al., 1996; Dos Santos-Rodrigues et al., 2014; Latini and Pedata, 

2001; Parkinson et al., 2011). 

Since the ENT transporters, which seem to dominate in the CNS, are bi-directional, they can 

not only increase the flow of adenosine into the cell when its extracellular level exceeds its  

intracellular one, but they may mediate the efflux of adenosine from the cell, when its intracellular 

level increases. On the other hand, when the Na+ gradient is reversed, also the concentrative 

nucleoside transporters can release adenosine from the cell (Dos Santos-Rodrigues et al., 2014; 

Latini and Pedata, 2001; Parkinson et al., 2011). 

 

2.4 Adenosine inactivation 

Extracellular adenosine is primarily inactivated by uptake across the neuronal cell membrane, 

followed by either intracellular phosphorylaton to AMP by adenosine kinase (AKA), or to a lesser 

degree deamination to inosine by adenosine deaminase (ADA) (Fig. 1).  

ADA is a cytosolic enzyme present in many neurons in the brain, but its highest activity is 

seen in neurons of the basal hypothalamus; ADA can also be expressed extracellularly in various 

tissues (Desrosiers et al., 2007; Yegutkin, 2008). In addition to the enzymatic function, ADA 

catalyses the irreversible deamination of adenosine to inosine. ADA can also exist in a form 

associated with the adenosine A1 receptor, so called ektoADA, which can act as a positive 

modulator of the adenosine binding and signalling function (Ciruela et al., 1996; Ruiz et al., 2000). 

Moreover, inosine can be then metabolized to hypoxanthine and finally to urate by xanthine oxidase 

(Morelli et al., 2010). 

AKA is part of the cycle between adenosine and AMP, which enables the cell to rapidly 

respond to changes in the concentration of adenosine. AKA can be expressed in both  the cytoplasm 
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(short isoform) and the nuclei (long isoform) of astrocytes or neurons, and phosphorylates 

adenosine to AMP (Boison, 2013). In the adult brain the expression of AKA is largely restricted to 

astrocytes, with the exception of neurons in the olfactory bulb, which maintain high levels of AKA 

expression (Boison, 2013).  

Several lines of evidence indicate that under basal conditions astrocytic AKA is the main 

regulator of extracellular adenosine, by driving adenosine influx into astrocytes via bi-directional 

nucleoside transporters (Boison et al., 2010). In contrast, deamination by ADA prevails under 

conditions in which adenosine levels become excessive (e.g. due to pathologic activity such as 

ischemia or hypoxia) (Latini and Pedata, 2001). 

Another possible metabolic pathway of adenosine is a reversible reaction catalysed by SAH 

hydrolase, leading to the formation of SAH and L-homocysteine; however, it represents only a 

minor pathway of adenosine degradation in physiological conditions, as the level of L-

homocysteine and SAH in the brain is very low (Fig. 1) (Gharib et al,., 1982; Reddington and 

Pusch, 1983).   

Once present in the extracellular space, adenosine may diffuse far away and influence its 

receptors (Abbracchio and Burnstock, 1998; Abbracchio et al., 2008; Burnstock, 1976, Fredholm et 

al., 2001, 2011; Ribeiro et al., 2002).  

 

3. Adenosine receptors 

Currently, four subtypes of adenosine receptor (A1, A2A, A2B, and A3), which belong to the 

family of G protein-coupled receptors (GPCR), have been cloned and characterized (Table 1) (for 

recent review see Chen et al., 2014; Fredholm et al., 2000, 2001, 2011). It has been estimated that 

under physiological conditions, extracellular levels of adenosine in the rodent CNS (nM range) are 

sufficient to stimulate both the higher affinity A1 and A2A receptors. Under pathological conditions, 

such as hypoxia/ischemia and seizures, adenosine rises markedly to concentrations that can 

stimulate both the lower affinity A3 and A2B receptors. 

 

3.1 Signal transduction 

The main intracellular signalling pathways involve the formation of cAMP, with A1 and A3 

receptors causing (through Gi and Go proteins) inhibition of adenylate cyclase (AC) and decreased 

cAMP production, which lead to reduction of protein kinase A (PKA) activity and cyclic AMP 

response element binding protein (CREB) phosphorylation. On the other hand, stimulation of A2A 
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and A2B receptors activates AC through Gs/olf proteins, resulting in activation of PKA and 

phosphorylation of CREB (Table 1, Fig 2) (Cunha, 2001; Fredholm et al, 2001, 2011).  

Another  downstream target of PKA activation induced by stimulation of A2A receptors 

besides CREB is the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), 

which is abundantly expressed in striatal projection neurons. Activation of A2A receptors increases 

the phosphorylation of DARPP-32 protein at the threonine residue 34 (Thr34), which converts this 

protein into a potent inhibitor of protein phosphatase-1 (PP-1) (Fig. 2) (Fredholm et al., 2007; 

Svenningsson et al., 2000, 2004). In turn, blockade of A2A receptors decreases the effect of D2 

receptor blockade on DARPP-32 phosphorylation at Thr34 and, at the same time, increases the 

phosphorylation of this protein at the threonine residue 75, which converts DARPP-32  into an 

inhibitor of PKA (Fredholm et al., 2007; Svenningsson et al., 2000, 2004). Thus, DARPP-32 has 

the unique property of being a dual-function protein, acting as an inhibitor of either PP-1 or of 

PKA.  

Other mechanisms, such as voltage-sensitive Ca2+ channels (types Q, N, and P), K+ channels 

and phospholipase C, are also involved in signal transduction by each of the adenosine receptors 

(Table 1; Fig. 2) (Dunwiddie and Masino, 2001; Ralevic and Burnstock, 1998; Fredholm et al., 

2001, 2011). Additionally, the involvement of mitogen-activated protein kinase (MAPK) pathway 

in cells of the Chinese hamster ovary (CHO) and COS-7 fibroblast-like cells was also shown 

(Dickenson et al., 1998; Schulte and Fredholm, 2000, 2003).  

 

3.2 Adenosine A1, A2B and A3 receptors localization 

The inhibitory A1 receptors, which are expressed on both neurons and glial cells, are the most 

abundant adenosine receptors in many regions of the brain. These receptors are localized both pre- 

and postsynaptically. The highest expression of A1 receptors has been found in the cortex, striatum, 

thalamus, cerebellum and hippocampus (Table 1) (Fastbom et al., 1987; Fredholm et al., 2005; 

Ochiishi et al., 1999; Schindler et al., 2001; Sebastiao and Ribeiro, 2009b). Moreover, the A1 

receptor mRNA is also present in basal ganglia (BG) structures, including the striatum, globus 

pallidus, and subthalamic nucleus (Dixon et al., 1996). These receptors are also present on 

astrocytes, oligodendrocytes, and microglia (Biber et al., 1997; Dare et al., 2007; Gebicke-Haerter 

et al., 1996; Othman et al., 2003). In the striatum, adenosine A1 receptors are present in both direct 

and indirect GABAergic efferent neurons, as well as in cholinergic interneurons (Alexander and 

Reddington, 1989; Ferre et al., 1996; Rivkees et al., 1995). Moreover, presynaptic A1 receptors are 

present on glutamatergic cortico-striatal and dopaminergic nigro-striatal afferents but also on nerve 
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terminals in the globus pallidus, substantia nigra and hippocampus, where they modulate the release 

of neurotransmitters, such as glutamate, acetylcholine, serotonin and GABA (Cunha et al., 2001; 

Fastbom et al., 1987; Rebola et al., 2003).  

Adenosine A2B receptors are mainly present in peripheral organs such as the bowel, bladder, 

lung, vas deferens, but can also be found in the spinal cord and brain (Feoktistov and Biaggioni, 

1997; Pierce et al., 1992; Ralevic and Burnstock, 1998). In the brain, A2B receptors are present in 

hippocampal CA1 and CA3 neurons, in the hypothalamic, thalamic, and striatal neurons; low levels 

of these receptors are also expressed on glial cells (Table 1) (Dare et al., 2007; Feoktistov and 

Biaggioni, 1997; Fredholm et al., 2001; Pierce et al., 1992; Ralevic and Burnstock, 1998).  

The distribution and physiological functions A3 receptors in the brain are still unclear, 

although these receptors are  widely distributed in peripheral organs (mainly in the testis and lung) 

(Dixon et al., 1996; Rivkees et al., 2000; Shearman and Weaver, 1997). A relatively low level of A3 

receptors and their mRNA was detected in the hippocampus, cortex, cerebellum and striatum with 

cellular localization in neurons, astrocytes, and microglia (Table 1) (Brand et al., 2001; Dare et al., 

2007; Dixon et al., 1996; Fredholm et al., 2011; Hammarberg et al., 2003; Wittendorp et al., 2004). 

 

3.3 Adenosine A2A receptors and their localization in the brain 

In contrast to the widespread distribution of A1 in the CNS, the A2A receptors are highly 

abundant in the striatum and nucleus accumbens. Moreover, positron emission tomography (PET) 

studies in humans showed that A2A receptors, similarly what observed in rodents, are concentrated 

in the caudate-putamen and nucleus accumbens (Brooks et al., 2008). However, studies performed 

with more sensitive techniques have demonstrated the presence of A2A receptors and corresponding 

mRNAs, albeit at lower level of expression, in several other brain areas, such as the hippocampus, 

cerebral cortex, extended amygdala, thalamic nuclei, and substantia nigra (Cunha et al., 1994; 

Dixon et al., 1996; Jarvis and Williams, 1989; Rebola et al., 2005; Rosin et al., 1998, 2003; 

Svenningsson et al., 1998, 1999). It is noteworthy that A2A receptors are also present on glial cells, 

and that about 3% of their total number are located on striatal astrocytes (Dare et al., 2007; 

Hettinger et al., 2001; Matos et al., 2012, 2013; Rosin et al., 2003).  

In the striatum, A2A receptors are homogeneously distributed throughout the lateral and 

medial parts and display dense labelling of the neuropil (Rosin et al., 1998, 2003). These receptors 

are mainly localized postsynaptically in the GABAergic medium spiny neurons of the indirect 

pathway projecting to the globus pallidus external segment (GPe). These neurons also express a 

high density of dopamine D2 receptors and enkephalin (Augood et al., 1994; Fink et al., 1992; 
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Rebola et al., 2005; Rosin et al., 2003; Schiffmann et al., 1991, 2007; Svenningsson et al., 1998). 

Neurons of the direct striato-nigral pathway, which selectively express dopamine D1 receptors and 

the peptide dynorphin, do not contain a significant level of A2A receptors (Schiffmann et al., 1991). 

Morphologically, A2A receptors in the striatum predominate in dendrites and dendritic spines and 

are expressed to a lesser extent  in axons and axon terminals of recurrent collaterals projecting back 

to the striatum or from the cortical areas (Rebola et al., 2005).  

The A2A receptors in the striatum are also localized presynaptically on glutamatergic 

terminals that contact medium-sized  spiny neurons of the GABAergic direct striato-nigral pathway 

(Rodrigues et al., 2005; Rosin et al., 2003, Quiroz et al., 2009), where they heteromerize with A1 

receptors and regulate the release of glutamate (Ciruela et al., 2006, Quiroz et al., 2009). Such a co-

expression of adenosine A2A and A1 receptor mRNAs was also found on the glutamatergic nerve 

terminals in the hippocampus (Rebola et al., 2005), which may control glutamate release. Moreover, 

A2A receptors located on GABAergic collateral axons may modulate in an inhibitory way the 

GABA release from medium-sized spiny projection neurons, likely relieving a GABA-mediated 

inhibition of these neurons (Mori et al., 1996). In turn, A2A receptors located on striatal cholinergic 

nerve terminals modulate the acetylcholine (Ach) release (Brown et al., 1990; Kurokawa et al., 

1994, 1996). A2A receptor agonists enhance, and A2A receptor antagonists reduce the Ach release in 

vivo (Kurokawa et al., 1996), an effect modulated by the dopaminergic transmission (Kurokawa et 

al., 1996).  

Regarding the nucleus accumbens (the so-called ventral striatum), A2A receptors follow the 

same pattern of distribution as the dopamine D2 receptors, and the shell of the nucleus accumbens 

displays a density of adenosine A2A receptors about 40% lower than that in the dorsal striatum 

(Rosin et al., 2003). A distinction between the dorsal and ventral striatum has already been 

suggested by others. The dorsal part  seems to be the most important for the control of dopamine-

mediated motor behavior (Joel and Weiner, 2000; Groenewegen 2007, Voorn et al., 2004). On the 

other hand, the so-called “ventral striatum”, which comprises  the nucleus accumbens, the 

ventromedial part of the striatum, and the olfactory tubercle, is a region connected with limbic 

structures, and seems to be strongly associated with emotional and motivational aspects of behavior 

(Joel and Weiner, 2000; Groenewegen 2007, Voorn et al., 2004). 

 

4. Homo- and heteromeric complexes formed by adenosine A2A receptors 

A growing body of evidence indicates that A2A receptors, like many other GPCR not only 

form homodimers and heterodimers with A1 receptors, but also interact with other non-
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adenosinergic receptors (Fredholm et al., 2007; Ferre et al., 2011, Sebastiao and Ribeiro, 2009a,b). 

Such heteromers are presently regarded as a molecular basis for the known direct and indirect (via 

adapter proteins) intramembrane receptor/receptor interactions. The most well-known heterodimeric 

interactions involve A2A and dopamine D2 receptors (see chapter 4).  

Direct evidence for A2A/D2 heteromers in addition to A2A homomeric complexes within the 

plasma membrane came from fluorescent and bioluminescent resonance energy transfer (FRET and 

BRET) analyses (Canals et al., 2003). Such a heteromer represents one of the possible molecular 

mechanisms for the functional antagonism between A2A/D2 receptors, demonstrated earlier at 

different levels, including the receptor and second messenger systems (Fig. 2) (Ferre et al., 2007, 

2011; Fuxe et al., 2003; Morelli et al., 1995; Sebastiao and Ribeiro, 2009a,b; Svenningsson et al., 

2000).  

Moreover, heterodimerization between A2A and  metabotropic glutamate mGlu5 receptors has 

been detected in glutamatergic striatal terminals in vivo, and in striatal neurons by in vitro studies, 

and has been suggested to play a role in striatal plasticity and in modulation of the activity of 

striatopallidal neurons (Ferre et al., 2002; Rodrigues et al., 2005). Differently from what observed 

for A2A and dopamine D2 receptors, which interact in an opposite functional way, the A2A/mGlu5 

receptor interaction may account for the synergism found after combined agonist or antagonists 

treatments, demonstrated at both the biochemical and behavioural levels. (Fig. 2) (Popoli et al., 

2001; Ferre et al., 2002; Nishi et al., 2003). A molecular mechanism underlying this functional 

interaction may be due to the fact that co-activation of mGlu5 and A2A receptors by agonists 

synergistically increases phosphorylation of DARPP-32 (Nishi et al., 2003). This potentiation of 

A2A/DARPP-32 signaling by mGlu5 receptors seems to results from the ability of mGlu5 to 

enhance the A2A-mediated cAMP formation in an extracellular signal-regulated kinase (ERK1/2)-

dependent manner. Since A2A, D2 and mGlu5 receptors are found together in the dendritic spines of 

the indirect striato-pallidal GABA pathway, the interactions between them may have a major role in 

controlling these striatal output neurons. In addition, presynaptic interactions between A2A and 

mGlu5 receptors on striatal glutamatergic nerve terminals may also contribute to the described 

interaction by synergistic regulation of glutamate release (Rodrigues et al. 2005).  

A further interaction was reported between A2A and cannabinoid CB1 receptors, which may 

also form heteromeric complexes and in this way A2A activation facilitates CB1 receptor signaling 

in the striatum (Fig. 2) (Carriba et al., 2007; Ferre et al., 2010; Sebastiao and Ribeiro, 2009a). 

Accordingly, blockade of A2A receptors was found to counteract the motor depressant effects 
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produced by intrastriatal administration of CB1 receptor agonists (Carriba et al., 2007; Ferre et al., 

2010).  

Recently a new possibility of receptor heteromultimers has been proposed. Thus, using a 

sequential resonance energy transfer (SRET) and bimolecular fluorescence complementation plus  

BRET, evidence for A2A-CB1-D2 and A2A-D2-mGlu5 receptor heteromers in transfected cells has 

been obtained (Cabello et al., 2009; Carriba et al., 2008). Such interactions at both pre- and 

postsynaptic levels play an important role in the control of neurotransmitters and signaling in 

different brain structures, and provide selective targets for drug development in many disorders of 

the CNS. However, it has to be mentioned that recently Pinna et al., (2014) showed that the 

interactions between A2A, CB1, and D2 receptors may be disrupted by L-DOPA administration in 

hemiparkinsonian rats, which could question the relevance of receptor heteromultimers to the 

therapy of motor dysfunctions in Parkinson’s disease (PD).  

 

5. Physiological functions of adenosine and adenosine A2A receptors  

Adenosine receptors regulate several important physiological functions at both the central 

and peripheral levels. However, the specific influence of each receptor subtype on these functions 

may vary, due to differences in both receptor distribution in the various body organs and affinity for 

endogenous adenosine, as described above. Remarkably, adenosine A2A receptors have recently 

attracted a great deal of attention as potential drug targets for different pathological conditions. The 

remainder of this chapter will summarize the most well-characterized biological functions of 

adenosine A2A receptors. The effects mediated by  adenosine A2A receptors that are more relevant to 

the pathological features of PD will be extensively discussed in other chapters of this book.  

5.1 Central effects of adenosine A2A receptors 

A major branch of the research on adenosine A2A receptors focuses on the modulation of 

motor behavior, based on the fact that these receptors are highly enriched in the striatum, a key 

nucleus of the BG circuitry (Fig. 3), where they are almost exclusively located on the GABAergic 

neurons of the striato-pallidal (or indirect) pathway that project to the GPe (Hettinger et al. 2001). 

At this level, adenosine A2A receptors can interact in an opposite way with dopamine D2 receptors 

(Svenningsson et al., 1999), so that the stimulation of A2A receptors depresses the D2 receptors-

dependent signalling (Ferré et al. 1997; Diaz-Cabiale et al., 2001). In line with this, and considering 

that dopamine D2 receptors crucially regulate movement execution, stimulation of adenosine A2A 
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receptors results in motor depressant effects, while blockade of these receptors stimulates 

movement (Hauber and Münkle, 1997; Ferré et al., 1997). Importantly, and notwithstanding their 

almost exclusive expression on the striato-pallidal neurons, A2A receptors, by acting on BG loops, 

can as well influence the effects mediated by dopamine D1 receptors, located on GABAergic 

neurons belonging to the striato-nigral (or direct) pathway, which also play a crucial role in motor 

control (Ferré et al. 1997; Le Moine et al., 1997). Taken together, these findings justify the 

intensive study of adenosine A2A receptor antagonists as new drugs for the treatment of the motor 

deficits featuring PD (see Chapters 2, 9, 14).  

Besides motor control, adenosine A2A receptors regulate important non-motor central 

functions. Studies with caffeine, a non-selective A1/A2A adenosine receptor antagonist, have clearly 

demonstrated that the adenosine system is involved in the regulation of attention and motivation. 

Data obtained from both experimental animals and humans indicate that caffeine augments alertness 

and wakefulness, reduces the perception of fatigue, and delays the need for sleep (Fredholm et al., 

1999; Snel and Lorist, 2011). Interestingly, additional studies in experimental animals have 

demonstrated that adenosine A2A receptors play a critical role in caffeine-induced arousal and 

increased alertness (Higgins et al., 2007; Lazarus et al., 2011). Moreover, caffeine improves the 

performance in memory tasks in both experimental animals and humans, and similar effects have 

been described for selective adenosine A2A receptor antagonists in experimental animals (Prediger 

et al., 2005; Kadowaki Horita et al., 2013, see also Chapter 8), although others failed to observe 

beneficial effects of A2A receptor antagonists on memory (O’Neill and Brown, 2007). Furthermore, 

A2A receptors play a crucial role in reward, motivation, and perception of stimuli, and both caffeine 

and selective A2A receptor antagonists facilitate these phenomena (Fredholm et al., 1999; Higgins et 

al., 2007; Mott et al., 2009). In line with this, other studies have demonstrated that adenosine A2A 

receptors may influence the effects of psychostimulant drugs of abuse, such as cocaine, 

methamphetamine and nicotine (Cauli et al., 2003; Justinova et al., 2009; Kobayashi et al., 2010; 

Simola et al., 2006; Wells et al., 2012). 

Adenosine A2A receptors have also been implicated in depression, as suggested by the 

beneficial effects of either genetic deletion or pharmacological blockade of these receptors in 

animal models of this pathology (El Yacoubi et al., 2001; Yamada et al., 2014). Another crucial 

function which appears to be regulated by adenosine A2A receptors is epileptogenesis, as indicated 

by the experimental and clinical evidences showing that caffeine and theophylline, another non-

selective adenosine receptor antagonist, may induce and/or aggravate seizures (Boison, 2011). 
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However, the precise role of adenosine A2A receptors in epileptogenesis is still debated, as studies in 

experimental animals have demonstrated that these receptors can have either facilitatory or 

inhibitory effects on seizures, depending on the experimental model utilized (Ates et al., 2004; 

Souza et al., 2013; Tchekalarova et al., 2010). In addition, adenosine A2A receptors can modulate 

nociception, and either blockade or genetic deletion of these receptors has been shown to increase 

the pain threshold in experimental models (Hussey et al., 2007; Ledent et al., 1997), likely by an 

action on central nociceptive pathways. It has to be mentioned that adenosine A2A receptors can also 

be found in peripheral nerves, where their stimulation decreases the pain threshold, likely by 

facilitating the transmission at the level of the primary afferent pathways (Khasar et al., 1995). 

Regulation of neuron homeostasis and survival is another major function of adenosine A2A 

receptors, that can be observed at the central level. A number of studies in experimental models of 

neurodegenerative diseases, such as Alzheimer’s disease, Huntington’s disease (HD), and PD 

(Espinosa et al., 2013; Popoli et al., 2008; Schwarzschild et al., 2003), cerebral ischemia (Chen and 

Pedata, 2008), and spinal cord trauma (Cassada et al, 2002) have consistently demonstrated that 

genetic and/or pharmacological manipulation of A2A receptors may counteract the 

neurodegeneration and neuroinflammation associated with these conditions. However, it has to be 

remarked that A2A receptors may differently influence these processes according to the specific 

experimental model used. Thus, A2A receptor blockade has consistently been shown to attenuate 

neuronal death and inflammatory damage in models of cerebral ischemia and neurodegenerative 

diseases. Conversely, stimulation, rather than blockade, of A2A receptors affords neuroprotection in 

experimental models of spinal trauma. Furthermore, evidences also exist suggesting that stimulation 

of A2A receptors may protect neurons in models of HD (Popoli et al., 2008). It has been 

hypothesized that adenosine A2A receptors may modulate neuronal homeostasis by attenuating 

either glutamate-induced excitotoxicity or glial activation (or both), two mechanisms that are 

known to play a crucial role in neurodegenerative and neuroinflammatory phenomena (Halliday and 

Stevens, 2011; Milanese et al., 2009). 

5.2 Peripheral effects of adenosine A2A receptors 

In addition to the protective effects elicited in the CNS, studies in experimental animals 

have indicated that adenosine A2A receptors can modulate inflammation and tissue damage in 

different peripheral organs, including the heart, kidney, lung, and intestine, as observed in several in 

vitro and in vivo models of inflammatory diseases. The modulation of inflammatory responses by 
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A2A receptors can be explained considering that many cells of the immune system, such as 

basophils, lymphocytes, mast cells, monocytes, and neutrophils express A2A receptors, and that 

these receptors profoundly influence the function of immune cells (Haskó et al., 2007; Hershfield, 

2005; Revan et al., 1996). Among these functions regulated by A2A receptors are the induction of 

pro-inflammatory mediators (Sullivan et al., 2001; Pouliot et al., 2002), activation of T cells 

(Sevigny et al., 2007), mast cell migration (Duffy et al., 2007), and monocyte secretion (Link et al., 

2000). Pro-inflammatory effects are usually observed following the stimulation of A2A receptors, 

although these receptors have complex effects on inflammation, and data also exist showing that 

blockade of A2A receptors may attenuate inflammation in peripheral organs (Katebi et al., 2008).  

Besides their effects on inflammation, A2A receptors can modulate other important functions 

of peripheral organs. Adenosine A2A receptors regulate several aspects of cardiovascular 

physiology, although some of these effects  are ascribable to either the cross-talk between A2A and 

other adenosine receptor subtypes, or to extracardiac A2A receptors (Headrick et al., 2013). 

Stimulation of A2A receptors has been reported to enhance the contractility of cardiomyocytes, to 

elicit a positive inotropic action (Dobson and Fenton, 1997), and to promote dilation of different 

vessels, including the coronary arteries (Belardinelli et al., 1998; Rump et al., 1999; Sato et al., 

2005). Remarkably, the A2A receptor agonist regadenoson is currently the most used vasodilators in 

the U.S.A. (Ghimire et al., 2013). Adenosine A2A receptors have also been suggested to participate 

in angiogenesis by promoting the generation of vascular endothelial growth factor (VEGF) (Adair 

et al., 2005), in atherosclerosis, by inhibiting the formation of foam-cells (Bingham et al., 2010), 

and in cardioprotection during ischemia, owing to their ability to modulate cell infiltration and 

inflammatory responses (Glover et al., 2005). Adenosine A2A receptors are also expressed at the 

level of the intestine, where they may influence some aspects of enteric function, such as 

contractility and secretion, although inconsistent results have been reported (Fornai et al., 2009; 

Storr et al. 2002; Tomaru et al., 1995). However, the most well-characterized effect of A2A 

receptors at this level is the modulation of intestinal inflammation, and a marked up-regulation of 

high-affinity A2A receptors has been observed in experimental colitis (Antonioli et al., 2006, 2008). 

Importantly, independent studies have shown that stimulation of A2A receptors attenuates 

inflammatory responses in the colon (Antonioli et al., 2010; Odashima et al., 2005; Rahimian et al., 

2010), although it has to be acknowledged that others failed to observe this effect (Selmeczy et al., 

2007). Adenosine A2A receptors have also been shown to modulate inflammation and tissue damage 

in the lung, as demonstrated by several preclinical studies (Eckle et al., 2009; Trevethick et al., 

2008; Wilson et al., 2009). This effect may be particularly relevant to diseases such as chronic 
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obstructive pulmonary disease (COPD) and asthma, both of which recognize a major inflammatory 

mechanisms, as well as to acute lung trauma. Agonists of A2A receptors have indeed been 

demonstrated effective in preclinical models of these diseases (Bonneau et al., 2006; Fozard et al., 

2002; LaPar et al., 2011), and are currently under clinical evaluation, though with inconsistent 

results (Salgado Garcia et al., 2014; Trevethick et al., 2008) Adenosine A2A receptors also regulate 

kidney physiology, by modulating the dilation of efferent arterioles, renal blood flow, and 

glomerular filtration rate (Levens et al., 1991; Al Mashhadi et al., 2009; Carlström et al., 2011), as 

well as by influencing renal inflammation (Awad et al., 2006; Garcia et al., 2011; Okusa et al., 

1999). Finally, adenosine A2A receptors have been suggested to participate in other 

physiopathological functions, such as ocular hemodinamics, protection from retinal ischemic 

damage (Zhong et al., 2013), wound healing (Katebi et al., 2008; Squadrito et al., 2014), 

inflammation in experimental models of arthritis (Mazzon et al., 2011), and tumor growth (Khalan 

et al., 2012; Montinaro et al., 2013). 

As described above, adenosine A2A receptors regulate several physiological functions at 

both the central and peripheral level. Therefore, in the clinical perspective of chronic utilization of 

drugs binding A2A receptors, these effects should be taken into great consideration. However, it is 

noteworthy that instances of side effects, in particular at the cardiovascular level, have usually been 

observed with A2A receptor agonists. On the other hand, A2A receptor antagonists, that show the 

most promising antiparkinsonian potential among adenosinergic ligands, appear generally well-

tolerated, as confirmed by clinical trials (LeWitt et al., 2008; Mizuno et al., 2013). 
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Figure Legends 

Fig.1. Adenosine synthesis and metabolic pathways. Adenosine is formed both intracelullarly 

from 5’-AMP by the cytosolic 5’-NT, and extracelullarly by the metabolism of nucleotides (ATP, 

ADP, AMP) released from the cell through the action of ecto-5'-nucleotidase. Another intracellular 

source of adenosine may be the hydrolysis of SAH by SAH hydrolase. Hence, adenosine formation 

depends on ATP breakdown and synthesis. Extracellular adenosine is primarily inactivated by 

uptake through the transporters (ENT), which are mainly bidirectional, followed by either 

phosphorylaton to AMP by AKA (under physiological conditions), or, to a lesser degree, 

deamination to inosine by ADA. Another possible catabolic pathway of adenosine, though of minor 

significance, is a reversible reaction catalysed by SAH hydrolase, leading to formation of SAH from 

adenosine and L-homocysteine (for more details see the text, point 2. and Abbracchio et al., 2009; 

Burnstock 2013; Latini and Pedata, 2001; Sperlagh and Vizi, 2011).  

Abbreviations: ADA, adenosine deaminase; AKA, adenosine kinase; ADP, adenosine diphosphate; 

AMP, adenosine monophosphate;  ATP, adenosine 5’-triphosphate; A1, A2A, A2B and A3 – 

adenosine receptors; ecto-5’-NT,  ecto-5'-nucleotidase; ENT, nucleoside transporter; 5’-NT, 5’-

nucleotidase;  SAH, S-adenosylhomocysteine;  

Fig. 2. Functional interactions between dopamine D2, adenosine A2A, cannabinoid CB1 and 

metabotropic glutamate mGlu5 receptors in striato-pallidal neurons. At the intramembrane 

level adenosine A2A receptors interact antagonistically with D2 and CB1 receptors. These receptors 

also exert an opposite effect at the AC level and AC-regulated downstream molecules, such as 

PKA, DARPP-32, CREB-P, and early genes. MGlu5 and A2A receptors act synergistically to 

counteract the D2 dopamine receptor signaling in striato-pallidal neurons. Synergistic interactions 

exist between A2A and mGlu5 receptors at the level of early genes expression (e.g. c-fos), MAP 

kinases and phosphorylation of DARPP-32 protein;  

dashed arrows, inhibitory effect; ‘+’, stimulation; ‘–’, inhibition.   

Abbreviations: AC, adenylyl cyclase; Ca
2+

, calcium ions; CaMK II/IV, calcium/calmodulin-

dependent protein kinase type II/IV; cAMP, cyclic AMP; CREB, cAMP response element-binding 

protein; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; DARPP-32-P (Thr75) and 

DARPP-32-P (Thr34), DARPP32-phopshorylated at threonine residues 75 and 34, respectively; Gi, 

Go, inhibitory G proteins; Gq, Gs, Golf, stimulatory G proteins; MAPK, mitogen-activated protein 

kinase; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; PP-1, protein 

phosphatase-1; PP-2, protein phosphatase-2. 

 

Fig. 3. Schematic representation of Basal Ganglia circuitry and cellular localization of A2A 

receptors in the striatum. The picture shows the two major striatal GABAergic output pathways. 

A2A receptors are almost selectively enriched in GABAergic neurons that express dopamine D2 

receptors and project to the GPe (striato-pallidal neurons). By contrast, GABAergic neurons 

projecting directly to the GPi and express D1 receptors (striato-nigral neurons), display scarce levels 

of A2A receptors. DA depletion in the striatum that features PD, results in a reduced stimulation of 
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both dopamine D1 and D2 receptors, leading to a disinhibition of GABAergic striato-pallidal 

neurons, and a reduced stimulation of GABAergic striato-nigral neurons and to a reduction of the 

inhibitory control on the GPi. The disinhibition of GPe neurons amplifies the excitatory Glu 

transmission of the STN. The resulting imbalance between the activity of the two main striatal 

efferent pathways, leads to a marked increase of the inhibitory output from the GPi, and to an 

excessive inhibition of Th-Cortex neurons, resulting in reduced movement performance. Blockade 

of A2A receptors in PD mitigates the overactivity of striato-pallidal and STN-GPi neurons, restoring 

some balance between the activity of the indirect and direct pathways.  

Abbreviations: DA,  dopamine; GABA, -aminobutyric acid; GPe, globus pallidus pars externa; 

GPi, globus pallidus pars interna; PD, Parkinson’s disease; STN, subthalamic nucleus; Th, 

thalamus 

 


