39 research outputs found

    Type 2 diabetes, depressive symptoms and trajectories of cognitive decline in a national sample of community-dwellers: a prospective cohort study

    Get PDF
    We examined the individual and synergistic effects of type 2 diabetes and elevated depressive symptoms on memory and executive function trajectories over 10 and eight years of follow-up, respectively. Our sample comprised 10,524 community-dwellers aged ≥50 years in 2002±03 from the English Longitudinal Study of Ageing. With respect to memory (word recall), participants with either diabetes or elevated depressive symptoms recalled significantly fewer words compared with those free of these conditions (reference category), but more words compared with those with both conditions. There was a significant acceleration in the rate of memory decline in participants aged ≤50±64 years with both conditions (-0.27, 95% CI, -0.45 to -0.08, per study wave), which was not observed in those with either condition or aged ≥65 years. With respect to executive function (animal naming), participants aged 65 years with diabetes or those with elevated depressive symptoms named significantly fewer animals compared with the reference category, while those with both conditions named fewer animals compared with any other category. The rate of executive function decline was significantly greater in participants with both conditions (-0.54, 95% CI, -0.99 to -0.10; and ±0.71, 95% CI, -1.16 to -0.27, per study wave, for those aged 50±64 and ≥65 years, respectively), but not in participants with either condition. Diabetes and elevated depressive symptoms are inversely associated with memory and executive function, but, individually, do not accelerate cognitive decline. The co-occurrence of diabetes and elevated depressive symptoms significantly accelerates cognitive decline over time, especially among those aged 50±64 years

    Reasoning Under Uncertainty: Towards Collaborative Interactive Machine Learning

    Get PDF
    In this paper, we present the current state-of-the-art of decision making (DM) and machine learning (ML) and bridge the two research domains to create an integrated approach of complex problem solving based on human and computational agents. We present a novel classification of ML, emphasizing the human-in-the-loop in interactive ML (iML) and more specific on collaborative interactive ML (ciML), which we understand as a deep integrated version of iML, where humans and algorithms work hand in hand to solve complex problems. Both humans and computers have specific strengths and weaknesses and integrating humans into machine learning processes might be a very efficient way for tackling problems. This approach bears immense research potential for various domains, e.g., in health informatics or in industrial applications. We outline open questions and name future challenges that have to be addressed by the research community to enable the use of collaborative interactive machine learning for problem solving in a large scale

    Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

    Get PDF
    In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles

    IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains Helminth Chronicity.

    Get PDF
    Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity

    Pain in platin-induced neuropathies: A systematic review and meta-analysis

    Get PDF
    INTRODUCTION: Platin-induced peripheral neuropathy (PIPN) is a common cause of PN in cancer patients. The aim of this paper is to systematically review the current literature regarding PIPN, with a particular focus on epidemiological and clinical characteristics of painful PIPN, and to discuss relevant management strategies. METHODS: A systematic computer-based literature search was conducted on the PubMed database. RESULTS: This search strategy resulted in the identification of 353 articles. After the eligibility assessment, 282 articles were excluded. An additional 24 papers were identified by scanning the reference lists. In total, 95 papers met the inclusion criteria and were used for this review. The prevalence of neuropathic symptoms due to acute toxicity of oxaliplatin was estimated at 84.6%, whereas PN established after chemotherapy with platins was estimated at 74.9%. Specifically regarding pain, the reported prevalence of pain due to acute toxicity of oxaliplatin was estimated at 55.6%, whereas the reported prevalence of chronic peripheral neuropathic pain in PIPN was estimated at 49.2%. CONCLUSION: Peripheral neuropathy is a common complication in patients receiving platins and can be particularly painful. There is significant heterogeneity among studies regarding the method for diagnosing peripheral neuropathy. Nerve conduction studies are the gold standard and should be performed in patients receiving platins and complaining of neuropathic symptoms post-treatment

    Understanding the complexity of glycaemic health: systematic bio-psychosocial modelling of fasting glucose in middle-age adults; a DynaHEALTH study

    Get PDF
    © The Author(s) 2018. Background: The prevention of the risk of type 2 diabetes (T2D) is complicated by multidimensional interplays between biological and psychosocial factors acting at the individual level. To address the challenge we took a systematic approach, to explore the bio-psychosocial predictors of blood glucose in mid-age. Methods: Based on the 31-year and 46-year follow-ups (5,078 participants, 43% male) of Northern Finland Birth Cohort 1966, we used a systematic strategy to select bio-psychosocial variables at 31 years to enable a data-driven approach. As selection criteria, the variable must be (i) a component of the metabolic syndrome or an indicator of psychosocial health using WHO guidelines, (ii) easily obtainable in general health check-ups and (iii) associated with fasting blood glucose at 46 years (P < 0.10). Exploratory and confirmatory factor analysis were used to derive latent factors, and stepwise linear regression allowed exploration of relationships between factors and fasting glucose. Results: Of all 26 variables originally considered, 19 met the selection criteria and were included in an exploratory factor analysis. Two variables were further excluded due to low loading (<0.3). We derived four latent factors, which we named as socioeconomic, metabolic, psychosocial and blood pressure status. The combination of metabolic and psychosocial factors, adjusted for sex, provided best prediction of fasting glucose at 46 years (explaining 10.7% of variation in glucose; P < 0.001). Regarding different bio-psychosocial pathways and relationships, the importance of psychosocial factors in addition to established metabolic risk factors was highlighted. Conclusions: The present study supports evidence for the bio-psychosocial nature of adult glycemic health and exemplifies an evidence-based approach to model the bio-psychosocial relationships. The factorial model may help further research and public health practice in focusing also on psychosocial aspects in maintaining normoglycaemia in the prevention of cardio-metabolic diseases.European Union’s Horizon 2020 research and innovation programme, grant agreement No 633595

    Human and Machine Learning

    Get PDF
    In this paper, we consider learning by human beings and machines in the light of Herbert Simon’s pioneering contributions to the theory of Human Problem Solving. Using board games of perfect information as a paradigm, we explore differences in human and machine learning in complex strategic environments. In doing so, we contrast theories of learning in classical game theory with computational game theory proposed by Simon. Among theories that invoke computation, we make a further distinction between computable and computational or machine learning theories. We argue that the modern machine learning algorithms, although impressive in terms of their performance, do not necessarily shed enough light on human learning. Instead, they seem to take us further away from Simon’s lifelong quest to understand the mechanics of actual human behaviour

    Avis de recherche :

    Get PDF
    The Atlantic Meridional Overturning Circulation (AMOC) is part of a global redistribution system in the ocean that carries vast amounts of mass, heat, and freshwater. Within the AMOC, water mass transformations in the Nordic Seas (NS) and the overflows across the Greenland-Scotland Ridge (GSR) contribute significantly to the overturning mass transport. The deep NS are separated by the GSR from direct exchange with the subpolar North Atlantic. Two deeper passages, Denmark Strait (DS, sill depth 630 m) and Faroe Bank Channel (FBC, sill depth 840 m), constrain the deep outflow. The outflow transports are assumed to be governed by hydraulic control (Whitehead 1989, 1998). According to the circulation scheme by Dickson and Brown (1994), there is an overflow of 2.9 Sv (1 Sv = 1 Sverdrup = 106 m3 s–1) through DS, 1.7 Sv through FBC and another 1 Sv from flow across the Iceland%Faroe Ridge (IFR). To the south of the GSR, the overflows sink to depth and then spread along the topography, eventually merging to form a deep boundary current in the western Irminger Sea. During the descent, the dense bottom water flow doubles its volume by entrainment of ambient waters (e.g. Price and Baringer 1994) so that there is a deep water transport of 13.3 Sv once the boundary current reaches Cape Farvel (Dickson and Brown 1994). Thus the overflows and the overflow-related part of the AMOC account for more than 70% of the maximum total overturning, which is estimated from observations to be about 18 Sv (e.g. Macdonald 1998
    corecore