161 research outputs found
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Early Gnathostome Phylogeny Revisited: Multiple Method Consensus
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.A series of recent studies recovered consistent phylogenetic scenarios of jawed vertebrates, such as the paraphyly of placoderms with respect to crown gnathostomes, and antiarchs as the sister group of all other jawed vertebrates. However, some of the hylogenetic relationships within the group have remained controversial, such as the positions of Entelognathus, ptyctodontids, and the Guiyu-lineage that comprises Guiyu, Psarolepis and Achoania. The revision of the dataset in a recent study reveals a modified phylogenetic hypothesis, which shows that some of these phylogenetic conflicts were sourced from a few inadvertent miscodings. The interrelationships of early gnathostomes are addressed based on a combined new dataset with 103 taxa and 335 characters, which is the most comprehensive morphological dataset constructed to date. This dataset is investigated in a phylogenetic context using maximum parsimony (MP), Bayesian inference (BI) and maximum likelihood (ML) approaches in an attempt to explore the consensus and incongruence between the hypotheses of early gnathostome interrelationships recovered from different methods. Our findings consistently corroborate the paraphyly of placoderms, all `acanthodians' as a paraphyletic stem group of chondrichthyans, Entelognathus as a stem gnathostome, and the Guiyu-lineage as stem sarcopterygians. The incongruence using different methods is less significant than the consensus, and mainly relates to the positions of the placoderm Wuttagoonaspis, the stem chondrichthyan Ramirosuarezia, and the stem osteichthyan LophosteusÐthe taxa that are either poorly known or highly specialized in character complement. Given that the different performances of each phylogenetic approach, our study provides an empirical case that the multiple phylogenetic analyses of
morphological data are mutually complementary rather than redundant
A high-performance 8 nV/root Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals
Background: It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Finally, to the best of our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording electrocorticographic (ECoG) signals. Methods: To address this problem, we designed and developed a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless instrument (55 × 80 mm2). The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. Results: To provide ex vivo proof-of-function, a wide variety of high-quality bioelectrical signal recordings are reported, including electroencephalographic (EEG), electromyographic (EMG), electrocardiographic (ECG), acceleration signals, and muscle fasciculations. Low-noise in vivo recordings of weak local field potentials (LFPs), which were wirelessly acquired in real time using segmented deep brain stimulation (DBS) electrodes implanted in the thalamus of a non-human primate, are also presented. Conclusions: The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile and reliable tool to be utilized in a wide range of applications and environments
Assessing an organizational culture instrument based on the Competing Values Framework: Exploratory and confirmatory factor analyses
BACKGROUND: The Competing Values Framework (CVF) has been widely used in health services research to assess organizational culture as a predictor of quality improvement implementation, employee and patient satisfaction, and team functioning, among other outcomes. CVF instruments generally are presented as well-validated with reliable aggregated subscales. However, only one study in the health sector has been conducted for the express purpose of validation, and that study population was limited to hospital managers from a single geographic locale. METHODS: We used exploratory and confirmatory factor analyses to examine the underlying structure of data from a CVF instrument. We analyzed cross-sectional data from a work environment survey conducted in the Veterans Health Administration (VHA). The study population comprised all staff in non-supervisory positions. The survey included 14 items adapted from a popular CVF instrument, which measures organizational culture according to four subscales: hierarchical, entrepreneurial, team, and rational. RESULTS: Data from 71,776 non-supervisory employees (approximate response rate 51%) from 168 VHA facilities were used in this analysis. Internal consistency of the subscales was moderate to strong (α = 0.68 to 0.85). However, the entrepreneurial, team, and rational subscales had higher correlations across subscales than within, indicating poor divergent properties. Exploratory factor analysis revealed two factors, comprising the ten items from the entrepreneurial, team, and rational subscales loading on the first factor, and two items from the hierarchical subscale loading on the second factor, along with one item from the rational subscale that cross-loaded on both factors. Results from confirmatory factor analysis suggested that the two-subscale solution provides a more parsimonious fit to the data as compared to the original four-subscale model. CONCLUSION: This study suggests that there may be problems applying conventional CVF subscales to non-supervisors, and underscores the importance of assessing psychometric properties of instruments in each new context and population to which they are applied. It also further highlights the challenges management scholars face in assessing organizational culture in a reliable and comparable way. More research is needed to determine if the emergent two-subscale solution is a valid or meaningful alternative and whether these findings generalize beyond VHA
In Situ Identification of Plant-Invasive Bacteria with MALDI-TOF Mass Spectrometry
Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues
Strategies of a parasite of the ant–Acacia mutualism
Mutualisms can be exploited by parasites—species that obtain resources from a partner but provide no services. Though the stability of mutualisms in the presence of such parasites is under intensive investigation, we have little information on life history traits that allow a species to be a successful mutualist or rather a parasite, particularly in cases where both are closely related. We studied the exploitation of Acacia myrmecophytes by the ant, Pseudomyrmex gracilis, contrasting with the mutualistic ant Pseudomyrmex ferrugineus. P. gracilis showed no host-defending behavior and had a negative effect on plant growth. By preventing the mutualist from colonization, P. gracilis imposes opportunity costs on the host plant. P. gracilis produced smaller colonies with a higher proportion of alates than did the mutualist and thus showed an “r-like” strategy. This appears to be possible because P. gracilis relies less on host-derived food resources than does the mutualist, as shown by behavioral and stable isotope studies. We discuss how this system allows the identification of strategies that characterize parasites of mutualisms
Evolutionary Instability of Symbiotic Function in Bradyrhizobium japonicum
Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally-acquired bacterial mutualists often lose symbiotic function over evolutionary time. Here, we investigate the evolutionary erosion of symbiotic traits in Bradyrhizobium japonicum, a nodulating root symbiont of legumes. Building on a previous published phylogeny we infer loss events of nodulation capability in a natural population of Bradyrhizobium, potentially driven by mutation or deletion of symbiosis loci. Subsequently, we experimentally evolved representative strains from the symbiont population under host-free in vitro conditions to examine potential drivers of these loss events. Among Bradyrhizobium genotypes that evolved significant increases in fitness in vitro, two exhibited reduced symbiotic quality, but no experimentally evolved strain lost nodulation capability or evolved any fixed changes at six sequenced loci. Our results are consistent with trade-offs between symbiotic quality and fitness in a host free environment. However, the drivers of loss-of-nodulation events in natural Bradyrhizobium populations remain unknown
Antagonistic Bacterial Interactions Help Shape Host-Symbiont Dynamics within the Fungus-Growing Ant-Microbe Mutualism
Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites
The small RNA diversity from Medicago truncatularoots under biotic interactions evidences the environmental plasticity of the miRNAome
Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline.
Most land plants form mutualistic associations with arbuscular mycorrhizal fungi of the Glomeromycota, but recent studies have found that ancient plant lineages form mutualisms with Mucoromycotina fungi. Simultaneous associations with both fungal lineages have now been found in some plants, necessitating studies to understand the functional and evolutionary significance of these tripartite associations for the first time. We investigate the physiology and cytology of dual fungal symbioses in the early-diverging liverworts Allisonia and Neohodgsonia at modern and Palaeozoic-like elevated atmospheric CO2 concentrations under which they are thought to have evolved. We found enhanced carbon cost to liverworts with simultaneous Mucoromycotina and Glomeromycota associations, greater nutrient gain compared with those symbiotic with only one fungal group in previous experiments and contrasting responses to atmospheric CO2 among liverwort-fungal symbioses. In liverwort-Mucoromycotina symbioses, there is increased P-for-C and N-for-C exchange efficiency at 440 p.p.m. compared with 1500 p.p.m. CO2. In liverwort-Glomeromycota symbioses, P-for-C exchange is lower at ambient CO2 compared with elevated CO2. No characteristic cytologies of dual symbiosis were identified. We provide evidence of a distinct physiological niche for plant symbioses with Mucoromycotina fungi, giving novel insight into why dual symbioses with Mucoromycotina and Glomeromycota fungi persist to the present day.The ISME Journal advance online publication, 27 November 2015; doi:10.1038/ismej.2015.204
- …
