88 research outputs found
Scalar soliton quantization with generic moduli
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credArticle funded by SCOAP3. CP is
a Royal Society Research Fellow and partly supported by the U.S. Department of Energy
under grants DOE-SC0010008, DOE-ARRA-SC0003883 and DOE-DE-SC0007897. ABR
is supported by the Mitchell Family Foundation. We would like to thank the Mitchell
Institute at Texas A&M and the NHETC at Rutgers University respectively for hospitality
during the course of this work. We would also like to acknowledge the Aspen Center
for Physics and NSF grant 1066293 for a stimulating research environment which led to
questions addressed in this paper
Four-nucleon contact interactions from holographic QCD
We calculate the low energy constants of four-nucleon interactions in an
effective chiral Lagrangian in holographic QCD. We start with a D4-D8 model to
obtain meson-nucleon interactions and then integrate out massive mesons to
obtain the four-nucleon interactions in 4D. We end up with two low energy
constants at the leading order and seven of them at the next leading order,
which is consistent with the effective chiral Lagrangian. The values of the low
energy constants are evaluated with the first five Kaluza-Klein resonances.Comment: 28 page
Orbifold equivalence for finite density QCD and effective field theory
In the large N_c limit, some apparently different gauge theories turn out to
be equivalent due to large N_c orbifold equivalence. We use effective field
theory techniques to explore orbifold equivalence, focusing on the specific
case of a recently discovered relation between an SO(2N_c) gauge theory and
QCD. The equivalence to QCD has been argued to hold at finite baryon chemical
potential, \mu_B, so long as one deforms the SO(2N_c) theory by certain
"double-trace" terms. The deformed SO(2N_c) theory can be studied without a
sign problem in the chiral limit, in contrast to SU(N_c) QCD at finite \mu_B.
The purpose of the double-trace deformation in the SO(2N_c) theory is to
prevent baryon number symmetry from breaking spontaneously at finite density,
which is necessary for the equivalence to large N_c QCD to be valid. The
effective field theory analysis presented here clarifies the physical
significance of double-trace deformations, and strongly supports the proposed
equivalence between the deformed SO(2N_c) theory and large N_c QCD at finite
density.Comment: 39 pages, 5 figures, 2 tables. v2: Minor typo fixes and
clarification
The Radiative Corrections to the Mass of the Kink Using an Alternative Renormalization Program
In this paper we compute the radiative correction to the mass of the kink in
theory in 1+1 dimensions, using an alternative renormalization
program. In this newly proposed renormalization program the breaking of the
translational invariance and the topological nature of the problem, due to the
presence of the kink, is automatically taken into account. This will naturally
lead to uniquely defined position dependent counterterms. We use the mode
number cutoff in conjunction with the above program to compute the mass of the
kink up to and including the next to the leading order quantum correction. We
discuss the differences between the results of this procedure and the
previously reported ones.Comment: 8 pages, 2 figures. arXiv admin note: substantial text overlap with
arXiv:0806.036
Some Recent Developments on Kink Collisions and Related Topics
We review recent works on modeling of dynamics of kinks in 1+1 dimensional
theory and other related models, like sine-Gordon model or
theory. We discuss how the spectral structure of small perturbations can affect
the dynamics of non-perturbative states, such as kinks or oscillons. We
describe different mechanisms, which may lead to the occurrence of the resonant
structure in the kink-antikink collisions. We explain the origin of the
radiation pressure mechanism, in particular, the appearance of the negative
radiation pressure in the and models. We also show that the
process of production of the kink-antikink pairs, induced by radiation is
chaotic.Comment: 26 pages, 9 figures; invited chapter to "A dynamical perspective on
the {\phi}4 model: Past, present and future", Eds. P.G. Kevrekidis and J.
Cuevas-Maraver; Springer book class with svmult.cls include
Spacetimes for λ-deformations
We examine a recently proposed class of integrable deformations to two-dimensional conformal field theories. These {\lambda}-deformations interpolate between a WZW model and the non-Abelian T-dual of a Principal Chiral Model on a group G or, between a G/H gauged WZW model and the non-Abelian T-dual of the geometric coset G/H. {\lambda}-deformations have been conjectured to represent quantum group q-deformations for the case where the deformation parameter is a root of unity. In this work we show how such deformations can be given an embedding as full string backgrounds whose target spaces satisfy the equations of type-II supergravity. One illustrative example is a deformation of the Sl(2,R)/U(1) black-hole CFT. A further example interpolates between the SU(2)×SU(2)SU(2)×SL(2,R)×SL(2,R)SL(2,R)×U(1)4 gauged WZW model and the non-Abelian T-dual of AdS3×S3×T4 supported with Ramond flux
Chiral Extrapolation of the Strangeness Changing K pi Form Factor
We perform a chiral extrapolation of lattice data on the scalar K pi form
factor and the ratio of the kaon and pion decay constants within Chiral
Perturbation Theory to two loops. We determine the value of the scalar form
factor at zero momentum transfer, at the Callan-Treiman point and at its soft
kaon analog as well as its slope. Results are in good agreement with their
determination from experiment using the standard couplings of quarks to the W
boson. The slope is however rather large. A study of the convergence of the
chiral expansion is also performed.Comment: few minor change
Precision measurement of the Dalitz plot distribution with the KLOE detector
Using fb of data collected with
the KLOE detector at DANE, the Dalitz plot distribution for the decay is studied with the world's largest sample of events. The Dalitz plot density is parametrized as a polynomial
expansion up to cubic terms in the normalized dimensionless variables and
. The experiment is sensitive to all charge conjugation conserving terms of
the expansion, including a term. The statistical uncertainty of all
parameters is improved by a factor two with respect to earlier measurements.Comment: 11 pages, 9 figures, supplement: an ascii tabl
Lattice QCD at the physical point: Simulation and analysis details
We give details of our precise determination of the light quark masses
m_{ud}=(m_u+m_d)/2 and m_s in 2+1 flavor QCD, with simulated pion masses down
to 120 MeV, at five lattice spacings, and in large volumes. The details concern
the action and algorithm employed, the HMC force with HEX smeared clover
fermions, the choice of the scale setting procedure and of the input masses.
After an overview of the simulation parameters, extensive checks of algorithmic
stability, autocorrelation and (practical) ergodicity are reported. To
corroborate the good scaling properties of our action, explicit tests of the
scaling of hadron masses in N_f=3 QCD are carried out. Details of how we
control finite volume effects through dedicated finite volume scaling runs are
reported. To check consistency with SU(2) Chiral Perturbation Theory the
behavior of M_\pi^2/m_{ud} and F_\pi as a function of m_{ud} is investigated.
Details of how we use the RI/MOM procedure with a separate continuum limit of
the running of the scalar density R_S(\mu,\mu') are given. This procedure is
shown to reproduce the known value of r_0m_s in quenched QCD. Input from
dispersion theory is used to split our value of m_{ud} into separate values of
m_u and m_d. Finally, our procedure to quantify both systematic and statistical
uncertainties is discussed.Comment: 45 page
Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings
Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model
(GN2), and its chiral cousin, the NJL2 model, have shown that there are phases
with inhomogeneous crystalline condensates. These (static) condensates can be
found analytically because the relevant Hartree-Fock and gap equations can be
reduced to the nonlinear Schr\"odinger equation, whose deformations are
governed by the mKdV and AKNS integrable hierarchies, respectively. Recently,
Thies et al have shown that time-dependent Hartree-Fock solutions describing
baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation,
and can be mapped directly to classical string solutions in AdS3. Here we
propose a geometric perspective for this result, based on the generalized
Weierstrass spinor representation for the embedding of 2d surfaces into 3d
spaces, which explains why these well-known integrable systems underlie these
various Gross-Neveu gap equations, and why there should be a connection to
classical string theory solutions. This geometric viewpoint may be useful for
higher dimensional models, where the relevant integrable hierarchies include
the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur
- …
