218 research outputs found

    The x-ray corona and jet of cygnus x-1

    Full text link
    Evidence is presented indicating that in the hard state of Cygnus X-1, the coronal mag- netic field might be below equipartition with radiation (suggesting that the corona is not powered by magnetic field dissipation) and that the ion temperature in the corona is significantly lower than what predicted by ADAF like models. It is also shown that the current estimates of the jet power set interesting contraints on the jet velocity (which is at least mildly relativistic), the accretion efficiency (which is large in both spectral states), and the nature of the X-ray emitting region (which is unlikely to be the jet).Comment: 8 pages, 1 figure. Accepted for publication in Journal of Modern Physics D, Proceedings of HEPRO II conference, Buenos Aires, Argentina, October 26-30, 200

    Using infrared/X-ray flare statistics to probe the emission regions near the event horizon of Sgr A*

    Get PDF
    The supermassive black hole at the centre of the Galaxy flares at least daily in the infrared (IR) and X-ray bands, yet the process driving these flares is still unknown. So far detailed analysis has only been performed on a few bright flares. In particular, the broadband spectral modelling suffers from a strong lack of simultaneous data. However, new monitoring campaigns now provide data on thousands of flaring events, allowing a statistical analysis of the flare properties. In this paper, we investigate the X-ray and IR flux distributions of the flare events. Using a self-consistent calculation of the particle distribution, we model the statistical properties of the flares. Based on a previous work on single flares, we consider two families of models: pure synchrotron models and synchrotron self-Compton (SSC) models. We investigate the effect of fluctuations in some relevant parameters (e.g. acceleration properties, density, magnetic field) on the flux distributions. The distribution of these parameters is readily derived from the flux distributions observed at different wavelengths. In both scenarios, we find that fluctuations of the power injected in accelerated particles plays a major role. This must be distributed as a power-law (with different indices in each model). In the synchrotron dominated scenario, we derive the most extreme values of the acceleration power required to reproduce the brightest flares. In that model, the distribution of the acceleration slope fluctuations is constrained and in the SSC scenario we constrain the distributions of the correlated magnetic field and flow density variations.Comment: 9 pages, 3 tables, 6 figures, MNRAS, June 201

    Thermal instability as a constraint for warm X-ray corona in AGN

    Full text link
    Context. Warm corona is a possible explanation for Soft X-ray Excess in Active Galactic Nuclei (AGN). This paper contains self consistent modeling of both: accretion disk with optically thick corona, where the gas is heated by magneto-rotational instability dynamo (MRI), and cooled by radiation which undergoes free-free absorption and Compton scattering. Aims. We determine the parameters of warm corona in AGN using disk-corona structure model that takes into account magnetic and radiation pressure. We aim to show the role of thermal instability (TI) as a constraint for warm, optically thick X-ray corona in AGN. Methods. With the use of relaxation code, the vertical solution of the disk driven by MRI together with radiative transfer in hydrostatic and radiative equilibrium is calculated, which allows us to point out how TI affects the corona for wide range of global parameters. Results. We show that magnetic heating is strong enough to heat upper layers of the accretion disk atmosphere, which form the warm corona covering the disk. Magnetic pressure does not remove TI caused by radiative processes operating in X-ray emitting plasma. TI disappears only in case of accretion rates higher than 0.2 of Eddington, and high magnetic field parameter αB\alpha_{\rm B} > 0.1. Conclusions. TI plays the major role in the formation of the warm corona above magnetically driven accretion disk in AGN. The warm, Compton cooled corona, responsible for soft X-ray excess, resulted from our model has typical temperature in the range of 0.01 - 2 keV and optical depth even up to 50, which agrees with recent observations

    Energetics of a black hole: constraints on the jet velocity and the nature of the X-ray emitting region in Cyg X-1

    Full text link
    We investigate the energetics of the jet and X-ray corona of Cyg X-1. We show that the current estimates of the jet power obtained from Halpha and [O III] measurements of the optical nebula surrounding the X-ray source allow one to constrain the bulk velocity of the jet. It is definitely relativistic (v >0.1c) and most probably in the range (0.3-0.8)c. The exact value of the velocity depends on the accretion efficiency. These constraints are obtained independently of, and are consistent with, previous estimates of the jet bulk velocity based on radio measurements. We then show that the X-ray emission does not originate in the jet. Indeed, the energy budget does not allow the corona to be ejected to infinity at relativistic speed. Rather, either a small fraction of the corona escapes to infinity, or the ejection velocity of the corona is vanishingly low. Although the corona could constitute the jet launching region, it cannot be identified with the jet itself. We discuss the consequences for various X-ray emission models.Comment: 9 pages, 4 figures, to appear in MNRA

    Absorption lines from magnetically driven winds in X-ray binaries II: high resolution observational signatures expected from future X-ray observatories

    Full text link
    In our self-similar, analytical, magneto-hydrodynamic (MHD) accretion-ejection solution, the density at the base of the outflow is explicitly dependent on the disk accretion rate - a unique property of this class of solutions. We had earlier found that the ejection index p>∌0.1(M˙acc∝rp)p >\sim 0.1 (\dot{M}_{acc} \propto r^p ) is a key MHD parameter that decides if the flow can cause absorption lines in the high resolution X-ray spectra of black hole binaries. Here we choose 3 dense warm solutions with p=0.1,0.3,0.45p = 0.1, 0.3, 0.45 and carefully develop a methodology to generate spectra which are convolved with the Athena and XRISM response functions to predict what they will observe seeing through such MHD outflows. In this paper two other external parameters were varied - extent of the disk, ro∣max=105, 106  rG\rm{r_o|_{max}} = 10^5, \, 10^6 \,\, \rm{r_G}, and the angle of the line of sight, i∌10−25∘i \sim 10 - 25^{\circ}. Resultant absorption lines (H and He-like Fe, Ca, Ar) change in strength and their profiles manifest varying degrees of asymmetry. We checked if a) the lines and ii) the line asymmetries are detected, in our suit of synthetic Athena and XRISM spectra. Our analysis shows that Athena should detect the lines and their asymmetries for a standard 100 ksec observation of a 100 mCrab source - lines with equivalent width as low as a few eV should be detected if the 6-8 keV counts are larger than 104−10510^4 - 10^5 even for the least favourable simulated cases.Comment: 18 pages, 13 figures in the main body and 3 figures in the appendix. Accepted for publication in MNRA

    A jet model for the fast IR variability of the black hole X-ray binary GX 339-4

    Get PDF
    Using the simultaneous Infra-Red (IR) and X-ray light curves obtained by Kalamkar et al., we perform a Fourier analysis of the IR/X-ray timing correlations of the black hole X-ray binary (BHB) GX 339-4. The resulting IR vs X-ray Fourier coherence and lag spectra are similar to those obtained in previous studies of GX 339-4 using optical light curves. In particular, above 1 Hz, the lag spectrum features an approximately constant IR lag of about 100 ms. We model simultaneously the radio to IR Spectral Energy Distribution (SED), the IR Power Spectral Density (PSD), and the coherence and lag spectra using the jet internal shock model ISHEM assuming that the fluctuations of the jet Lorentz factor are driven by the accretion flow. It turns out that most of the spectral and timing features, including the 100-ms lag, are remarkably well-reproduced by this model. The 100-ms time-scale is then associated with the travel time from the accretion flow to the IR emitting zone. Our exploration of the parameter space favours a jet which is at most mildly relativistic (¯ < 3), and a linear and positive relation between the jet Lorentz factor and X-ray light curve i.e. (t) − 1∝LX(t). The presence of a strong Low-Frequency Quasi-Periodic Oscillation (LFQPO) in the IR light curve could be caused by jet precession driven by Lense–Thirring precession of the jet-emitting accretion flow. Our simulations confirm that this mechanism can produce an IR LFQPO similar to that observed in GX 339-4

    Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    Cosmological and astrophysical observations suggest that 85% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy \u1d6fe rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiment’s individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different \u1d6fe-ray instruments
    • 

    corecore