155 research outputs found

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    PhenoWorld : a new paradigm to screen rodent behavior

    Get PDF
    Modeling depression in animals has inherent complexities that are augmented by intrinsic difficulties to measure the characteristic features of the disorder. Herein, we describe the PhenoWorld (PhW), a new setting in which groups of six rats lived in an ethological enriched environment, and have their feeding, locomotor activity, sleeping and social behavior automatically monitored. A battery of emotional and cognitive tests was used to characterize the behavioral phenotype of animals living in the PhW and in standard conditions (in groups of six and two rats), after exposure to an unpredictable chronic mild stress paradigm (uCMS) and antidepressants. Data reveal that animals living in the PhW displayed similar, but more striking, behavioral differences when exposed to uCMS, such as increased behavioral despair shown in the forced swimming test, resting/sleep behavior disturbances and reduced social interactions. Moreover, several PhW-cage behaviors, such as spontaneous will to go for food or exercise in running wheels, proved to be sensitive indicators of depressive-like behavior. In summary, this new ethological enriched paradigm adds significant discriminative power to screen depressive-like behavior, in particularly rodent's hedonic behavior

    Patient and surgery related factors associated with fatigue type polyethylene wear on 49 PCA and DURACON retrievals at autopsy and revision

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyethylene wear is an important factor for longevity of total knee arthroplasty. Proven and suspicious factors causing wear can be grouped as material, patient and surgery related. There are more studies correlating design and/or biomaterial factors to in vivo wear than those to patient and surgery related factors. Many retrieval studies just include revision implants and therefore may not be representative. This study is aimed to correlate patient- and surgery- related factors to visual wear score by minimizing design influence and include both autopsy and revision implants. Comparison between the groups was expected to unmask patient and surgery-related factors responsible for wear.</p> <p>Methods</p> <p>The amount of joint side wear on polyethylene retrievals was measured using a modification of an established visual wear score. Fatigue type wear was defined as summation of the most severe wear modes of delamination, pitting and cracks. Analysis of patient and surgery related variables suspicious to cause wear included prospectively sampled patient activity which was measured by self reported walking capacity. Statistical analysis was done by univariate analysis of variance. Activity level and implantation time were merged to an index of use and correlated to the wear score.</p> <p>Results</p> <p>Wear score after comparable implantation time was significantly less in the autopsy group. Even so, fatigue type wear accounted for 84 and 93 % of total wear score on autopsy and revision implants respectively. A highly significant influence on wear score was found in time of implantation (p = 0.002), level of activity (p = 0.025) and inserts belonging to revision group (p = 0.006). No influence was found for the kind of patella replacement (p = 0.483). Body mass index and accuracy of component alignment had no significant influence on visual wear score. Fatigue-type wear in the medial compartment was closely correlated to the index of use in the autopsy (R<sup>2 </sup>= 0.383) and the revision group (R<sup>2 </sup>= 0.813).</p> <p>Conclusion</p> <p>The present study's finding of substantial fatigue type wear in both autopsy and revision retrievals supports the theory that polyethylene fatigue strength is generally exceeded in this type of prosthesis. Furthermore, this study correlated fatigue-type polyethylene wear to an index of use as calculated by activity over time. Future retrieval studies may use activity over time as an important patient related factor correlated to the visual wear score. When evaluating total knee arthroplasty routine follow up, the surgeon must think of substantial wear present even without major clinical signs.</p

    Dysregulation of Mitochondrial Dynamics and the Muscle Transcriptome in ICU Patients Suffering from Sepsis Induced Multiple Organ Failure

    Get PDF
    BACKGROUND: Septic patients treated in the intensive care unit (ICU) often develop multiple organ failure including persistent skeletal muscle dysfunction which results in the patient's protracted recovery process. We have demonstrated that muscle mitochondrial enzyme activities are impaired in septic ICU patients impairing cellular energy balance, which will interfere with muscle function and metabolism. Here we use detailed phenotyping and genomics to elucidate mechanisms leading to these impairments and the molecular consequences. METHODOLOGY/PRINCIPAL FINDINGS: Utilising biopsy material from seventeen patients and ten age-matched controls we demonstrate that neither mitochondrial in vivo protein synthesis nor expression of mitochondrial genes are compromised. Indeed, there was partial activation of the mitochondrial biogenesis pathway involving NRF2alpha/GABP and its target genes TFAM, TFB1M and TFB2M yet clearly this failed to maintain mitochondrial function. We therefore utilised transcript profiling and pathway analysis of ICU patient skeletal muscle to generate insight into the molecular defects driving loss of muscle function and metabolic homeostasis. Gene ontology analysis of Affymetrix analysis demonstrated substantial loss of muscle specific genes, a global oxidative stress response related to most probably cytokine signalling, altered insulin related signalling and a substantial overlap between patients and muscle wasting/inflammatory animal models. MicroRNA 21 processing appeared defective suggesting that post-transcriptional protein synthesis regulation is altered by disruption of tissue microRNA expression. Finally, we were able to demonstrate that the phenotype of skeletal muscle in ICU patients is not merely one of inactivity, it appears to be an actively remodelling tissue, influenced by several mediators, all of which may be open to manipulation with the aim to improve clinical outcome. CONCLUSIONS/SIGNIFICANCE: This first combined protein and transcriptome based analysis of human skeletal muscle obtained from septic patients demonstrated that losses of mitochondria and muscle mass are accompanied by sustained protein synthesis (anabolic process) while dysregulation of transcription programmes appears to fail to compensate for increased damage and proteolysis. Our analysis identified both validated and novel clinically tractable targets to manipulate these failing processes and pursuit of these could lead to new potential treatments

    Inhibitory Role of Inducible cAMP Early Repressor (ICER) in Methamphetamine-Induced Locomotor Sensitization

    Get PDF
    BACKGROUND: The inducible cyclic adenosine monophosphate (cAMP) early repressor (ICER) is highly expressed in the central nervous system and functions as a repressor of cAMP response element-binding protein (CREB) transcription. The present study sought to clarify the role of ICER in the effects of methamphetamine (METH). METHODS AND FINDINGS: We tested METH-induced locomotor sensitization in wildtype mice, ICER knockout mice, and ICER I-overexpressing mice. Both ICER wildtype mice and knockout mice displayed increased locomotor activity after continuous injections of METH. However, ICER knockout mice displayed a tendency toward higher locomotor activity compared with wildtype mice, although no significant difference was observed between the two genotypes. Moreover, compared with wildtype mice, ICER I-overexpressing mice displayed a significant decrease in METH-induced locomotor sensitization. Furthermore, Western blot analysis and quantitative real-time reverse transcription polymerase chain reaction demonstrated that ICER overexpression abolished the METH-induced increase in CREB expression and repressed cocaine- and amphetamine-regulated transcript (CART) and prodynorphin (Pdyn) expression in mice. The decreased CART and Pdyn mRNA expression levels in vivo may underlie the inhibitory role of ICER in METH-induced locomotor sensitization. CONCLUSIONS: Our data suggest that ICER plays an inhibitory role in METH-induced locomotor sensitization

    Molecular Basis for Vulnerability to Mitochondrial and Oxidative Stress in a Neuroendocrine CRI-G1 Cell Line

    Get PDF
    Many age-associated disorders (including diabetes, cancer, and neurodegenerative diseases) are linked to mitochondrial dysfunction, which leads to impaired cellular bioenergetics and increased oxidative stress. However, it is not known what genetic and molecular pathways underlie differential vulnerability to mitochondrial dysfunction observed among different cell types.Starting with an insulinoma cell line as a model for a neuronal/endocrine cell type, we isolated a novel subclonal line (named CRI-G1-RS) that was more susceptible to cell death induced by mitochondrial respiratory chain inhibitors than the parental CRI-G1 line (renamed CRI-G1-RR for clarity). Compared to parental RR cells, RS cells were also more vulnerable to direct oxidative stress, but equally vulnerable to mitochondrial uncoupling and less vulnerable to protein kinase inhibition-induced apoptosis. Thus, differential vulnerability to mitochondrial toxins between these two cell types likely reflects differences in their ability to handle metabolically generated reactive oxygen species rather than differences in ATP production/utilization or in downstream apoptotic machinery. Genome-wide gene expression analysis and follow-up biochemical studies revealed that, in this experimental system, increased vulnerability to mitochondrial and oxidative stress was associated with (1) inhibition of ARE/Nrf2/Keap1 antioxidant pathway; (2) decreased expression of antioxidant and phase I/II conjugation enzymes, most of which are Nrf2 transcriptional targets; (3) increased expression of molecular chaperones, many of which are also considered Nrf2 transcriptional targets; (4) increased expression of β cell-specific genes and transcription factors that specify/maintain β cell fate; and (5) reconstitution of glucose-stimulated insulin secretion.The molecular profile presented here will enable identification of individual genes or gene clusters that shape vulnerability to mitochondrial dysfunction and thus represent potential therapeutic targets for diabetes and neurodegenerative diseases. In addition, the newly identified CRI-G1-RS cell line represents a new experimental model for investigating how endogenous antioxidants affect glucose sensing and insulin release by pancreatic β cells

    Differential and converging molecular mechanisms of antidepressants' action in the hippocampal dentate gyrus

    Get PDF
    Major depression is a highly prevalent, multidimensional disorder. Although several classes of antidepressants (ADs) are currently available, treatment efficacy is limited, and relapse rates are high; thus, there is a need to find better therapeutic strategies. Neuroplastic changes in brain regions such as the hippocampal dentate gyrus (DG) accompany depression and its amelioration with ADs. In this study, the unpredictable chronic mild stress (uCMS) rat model of depression was used to determine the molecular mediators of chronic stress and the targets of four ADs with different pharmacological profiles (fluoxetine, imipramine, tianeptine, and agomelatine) in the hippocampal DG. All ADs, except agomelatine, reversed the depression-like behavior and neuroplastic changes produced by uCMS. Chronic stress induced significant molecular changes that were generally reversed by fluoxetine, imipramine, and tianeptine. Fluoxetine primarily acted on neurons to reduce the expression of pro-inflammatory response genes and increased a set of genes involved in cell metabolism. Similarities were found between the molecular actions and targets of imipramine and tianeptine that activated pathways related to cellular protection. Agomelatine presented a unique profile, with pronounced effects on genes related to Rho-GTPase-related pathways in oligodendrocytes and neurons. These differential molecular signatures of ADs studied contribute to our understanding of the processes implicated in the onset and treatment of depression-like symptoms.Patricia Patricio, Antonio Mateus-Pinheiro, Monica Morais, and Nuno Dinis Alves received fellowships from the Portuguese Foundation for Science and Technology (FCT). Michal Korostynski and Marcin Piechota were funded by the POIG De-Me-Ter 3.1 and NCN 2011/03/D/NZ3/01686 grants. This study was co-funded by the Life and Health Sciences Research Institute (ICVS) and ON. 2-O NOVO NORTE-North Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/ 2013, through the European Regional Development Fund (ERDF) and by the SwitchBox Consortium (Contract FP7-Health-F2-2010-259772 from the European Union). The authors declare no conflict of interest

    Natural Reward Experience Alters AMPA and NMDA Receptor Distribution and Function in the Nucleus Accumbens

    Get PDF
    Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc), following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience) or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits) receptors in the NAc was determined using a bis(sulfosuccinimidyl)suberate (BS3) protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and function in the NAc. Although not identical, this sex experience-induced neuroplasticity has similarities to that caused by psychostimulants, suggesting common mechanisms for reinforcement of natural and drug reward

    Bright light therapy versus physical exercise to prevent co-morbid depression and obesity in adolescents and young adults with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial

    Get PDF
    Background: The risk for major depression and obesity is increased in adolescents and adults with attention-deficit / hyperactivity disorder (ADHD) and adolescent ADHD predicts adult depression and obesity. Non-pharmacological interventions to treat and prevent these co-morbidities are urgently needed. Bright light therapy (BLT) improves day– night rhythm and is an emerging therapy for major depression. Exercise intervention (EI) reduces obesity and improves depressive symptoms. To date, no randomized controlled trial (RCT) has been performed to establish feasibility and efficacy of these interventions targeting the prevention of co-morbid depression and obesity in ADHD. We hypothesize that the two manualized interventions in combination with mobile health-based monitoring and reinforcement will result in less depressive symptoms and obesity compared to treatment as usual in adolescents and young adults with ADHD. Methods: This trial is a prospective, pilot phase-IIa, parallel-group RCT with three arms (two add-on treatment groups [BLT, EI] and one treatment as usual [TAU] control group). The primary outcome variable is change in the Inventory of Depressive Symptomatology total score (observer-blinded assessment) between baseline and ten weeks of intervention. This variable is analyzed with a mixed model for repeated measures approach investigating the treatment effect with respect to all three groups. A total of 330 participants with ADHD, aged 14 – < 30 years, will be screened at the four study centers. To establish effect sizes, the sample size was planned at the liberal significance level of α = 0.10 (two-sided) and the power of 1-β = 80% in order to find medium effects. Secondary outcomes measures including change in obesity, ADHD symptoms, general psychopathology, health-related quality of life, neurocognitive function, chronotype, and physical fitness are explored after the end of the intervention and at the 12-week follow-up. This is the first pilot RCT on the use of BLT and EI in combination with mobile health-based monitoring and reinforcement targeting the prevention of co-morbid depression and obesity in adolescents and young adults with ADHD. If at least medium effects can be established with regard to the prevention of depressive symptoms and obesity, a larger scale confirmatory phase-III trial may be warranted.The trial is funded by the EU Framework Programme for Research and Innovation, Horizon 2020 (Project no. 667302). Funding period: January 2016–December 2020. This funding source had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results. Some local funds additionally contributed to carry out this study, especially for the preparation of the interventions: FBO research activity is by the Spanish Ministry of Economy and Competitiveness – MINECO (RYC-2011-09011) and by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Unit of Excellence on Exercise and Health (UCEES)

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link
    • …
    corecore