4,121 research outputs found
Entanglement Entropy and Wilson Loop in St\"{u}ckelberg Holographic Insulator/Superconductor Model
We study the behaviors of entanglement entropy and vacuum expectation value
of Wilson loop in the St\"{u}ckelberg holographic insulator/superconductor
model. This model has rich phase structures depending on model parameters. Both
the entanglement entropy for a strip geometry and the heavy quark potential
from the Wilson loop show that there exists a "confinement/deconfinement" phase
transition. In addition, we find that the non-monotonic behavior of the
entanglement entropy with respect to chemical potential is universal in this
model. The pseudo potential from the spatial Wilson loop also has a similar
non-monotonic behavior. It turns out that the entanglement entropy and Wilson
loop are good probes to study the properties of the holographic superconductor
phase transition.Comment: 23 pages,12 figures. v2: typos corrected, accepted in JHE
The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota
The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease
Uso de fármacos psicoestimulantes en drogodependencias
El uso de medicamentos estimulantes es una cuestión de plena actualidad en psiquiatría, aunque su utilización y prescripción es controvertida . Fármacos como el metilfenidato, las anfetaminas, o el modafinilo están siendo utilizados y estudiados en distintas enfermedades psiquiátricas como el trastorno por déficit de atención e hiperactividad (TDAH), la dependencia de cocaína, en trastornos del sueño y en la depresión resistente. Todos estos fármacos tienen en común, igual que las drogas de abuso, que son medicamentos que actúan sobre el sistema dopaminérgico, que constituye la base neurobiológica del refuerzo fisiológico. Los estimulantes como el metilfenidato o el modafinilo son fármacos eficaces en el TDAH y han sido estudiados en el tratamiento de la dependencia de cocaína. En niños con TDAH el metilfenidato es un factor protector para el desarrollo de fármaco en la dependencia de cocaína, aunque son estudios preliminares, por lo que no se debe considerar que este totalmente demostrado que los fármacos psicoestimulantes sean eficaces en el tratamiento de esta dependencia. Aunque no son conocidos todos los mecanismos fisiopatológicos, parece crítico que el refuerzo, y por lo tanto el riesgo de dependencia, aparece cuando se producen incrementos rápidos dopaminérgicos y que los efectos terapéuticos aparecen cuando son lentos y mantenidos. Las características de uso a dosis bajas administradas por vía oral disminuyen el riesgo de abuso. Para realizar una adecuada prescripción es necesario aclarar, definitivamente, los mecanismos neuroquímicos en los que intervienen, y sus indicaciones en drogodependenciasStimulant drugs prescription is a controversial and current topic in psychiatry. Drugs such as methylphenidate, amphetamine compounds and modafinil have been trialed and used in attention deficit hyperactivity disorder (ADHD), sleep conditions, cocaine dependence and as an adjunct to antidepressants for depression. All these drugs, like stimulant drugs abuse, increase extracellular dopamine in the brain.This effect is associated with reinforcing as well as therapeutic effects. Methylphenidate and modafinil treatment of ADHD are associated with a reduced risk for later substance abuse among ADHD patients. There is evidence of the beneficial effects of the use of modafinil in cocaine dependence, altough there isn't conclusive evidence for the stimulants' efficacy in treatment of the stimulants' dependence. At this time, the physiopathology of drug abuse and dependence is unknown, but it's known that the very critical point is that the reinforcing effects are associated with rapid changes in dopamine increases, whereas the therapeutic effects are associated with slowly and smoothly rising dopamine levels, such as are achieved with low doses and oral administration. Due to this, it's necessary to study the neurobiological bases on which stimulants drugs are related, and their clinical use in dependence treatment
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
Soft branes in supersymmetry-breaking backgrounds
We revisit the analysis of effective field theories resulting from
non-supersymmetric perturbations to supersymmetric flux compactifications of
the type-IIB superstring with an eye towards those resulting from the
backreaction of a small number of anti-D3-branes. Independently of the
background, we show that the low-energy Lagrangian describing the fluctuations
of a stack of probe D3-branes exhibits soft supersymmetry breaking, despite
perturbations to marginal operators that were not fully considered in some
previous treatments. We take this as an indication that the breaking of
supersymmetry by anti-D3-branes or other sources may be spontaneous rather than
explicit. In support of this, we consider the action of an anti-D3-brane
probing an otherwise supersymmetric configuration and identify a candidate for
the corresponding goldstino.Comment: 36+5 pages. References added, minor typos correcte
Quantum systems in weak gravitational fields
Fully covariant wave equations predict the existence of a class of
inertial-gravitational effects that can be tested experimentally. In these
equations inertia and gravity appear as external classical fields, but, by
conforming to general relativity, provide very valuable information on how
Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the
International School of Cosmology and Gravitation "Advances in the interplay
between quantum and gravity physics" edited by V. De Sabbata and A.
Zheltukhin, Kluwer Academic Publishers, Dordrech
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle
Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a
pair of isolated flat electronic bands and forms a strongly correlated
electronic platform. Here, we use scanning tunneling microscopy to probe local
properties of highly tunable twisted bilayer graphene devices and show that the
flat bands strongly deform when aligned with the Fermi level. At half filling
of the bands, we observe the development of gaps originating from correlated
insulating states. Near charge neutrality, we find a previously unidentified
correlated regime featuring a substantially enhanced flat band splitting that
we describe within a microscopic model predicting a strong tendency towards
nematic ordering. Our results provide insights into symmetry breaking
correlation effects and highlight the importance of electronic interactions for
all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page
Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures
Recently, theoretical studies show that layered HfTe5 is at the boundary of weak & strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic & crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors
VennPlex--a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints.
With the development of increasingly large and complex genomic and proteomic data sets, an enhancement in the complexity of available Venn diagram analytical programs is becoming increasingly important. Current freely available Venn diagram programs often fail to represent extra complexity among datasets, such as regulation pattern differences between different groups. Here we describe the development of VennPlex, a program that illustrates the often diverse numerical interactions among multiple, high-complexity datasets, using up to four data sets. VennPlex includes versatile output features, where grouped data points in specific regions can be easily exported into a spreadsheet. This program is able to facilitate the analysis of two to four gene sets and their corresponding expression values in a user-friendly manner. To demonstrate its unique experimental utility we applied VennPlex to a complex paradigm, i.e. a comparison of the effect of multiple oxygen tension environments (1–20% ambient oxygen) upon gene transcription of primary rat astrocytes. VennPlex accurately dissects complex data sets reliably into easily identifiable groups for straightforward analysis and data output. This program, which is an improvement over currently available Venn diagram programs, is able to rapidly extract important datasets that represent the variety of expression patterns available within the data sets, showing potential applications in fields like genomics, proteomics, and bioinformatics
- …
