58 research outputs found

    The Morphology and Intrinsic Excitability of Developing Mouse Retinal Ganglion Cells

    Get PDF
    The retinal ganglion cells (RGCs) have diverse morphology and physiology. Although some studies show that correlations between morphological properties and physiological properties exist in cat RGCs, these properties are much less distinct and their correlations are unknown in mouse RGCs. In this study, using three-dimensional digital neuron reconstruction, we systematically analyzed twelve morphological parameters of mouse RGCs as they developed in the first four postnatal weeks. The development of these parameters fell into three different patterns and suggested that contact from bipolar cells and eye opening might play important roles in RGC morphological development. Although there has been a general impression that the morphological parameters are not independent, such as RGCs with larger dendritic fields usually have longer but sparser dendrites, there was not systematic study and statistical analysis proving it. We used Pearson's correlation coefficients to determine the relationship among these morphological parameters and demonstrated that many morphological parameters showed high statistical correlation. In the same cells we also measured seven physiological parameters using whole-cell patch-clamp recording, focusing on intrinsic excitability. We previously reported the increase in intrinsic excitability in mouse RGCs during early postnatal development. Here we showed that strong correlations also existed among many physiological parameters that measure the intrinsic excitability. However, Pearson's correlation coefficient revealed very limited correlation across morphological and physiological parameters. In addition, principle component analysis failed to separate RGCs into clusters using combined morphological and physiological parameters. Therefore, despite strong correlations within the morphological parameters and within the physiological parameters, postnatal mouse RGCs had only limited correlation between morphology and physiology. This may be due to developmental immaturity, or to selection of parameters

    Adipose Tissue Gene Expression of Factors Related to Lipid Processing in Obesity

    Get PDF
    BACKGROUND: Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS: VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS: Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons

    Stakeholder views on secondary findings in whole-genome and whole-exome sequencing:a systematic review of quantitative and qualitative studies

    Get PDF
    Purpose: As whole-exome and whole-genome sequencing (WES/WGS) move into routine clinical practice, it is timely to review data that might inform the debate around secondary findings (SF) and the development of policies that maximize participant benefit. Methods: We systematically searched for qualitative and quantitative studies that explored stakeholder views on SF in WES/WGS. Framework analysis was undertaken to identify major themes. Results: 44 articles reporting the views of 11,566 stakeholders were included. Stakeholders were broadly supportive of returning ‘actionable’ findings, but definitions of actionability varied. Stakeholder views on SF disclosure exist along a spectrum: potential WES/WGS recipients’ views were largely influenced by a sense of rights, while views of genomics professionals were informed by a sense of professional responsibility. Experience of genetic illness and testing resulted in greater caution about SF, suggesting that truly informed decisions require an understanding of the implications and limitations of WES/WGS and possible findings. Conclusion: This review suggests that bidirectional interaction during consent might best facilitate informed decision-making about SF, and that dynamic forms of consent, allowing for changing preferences, should be considered. Research exploring views from wider perspectives and from recipients who have received SF is critical if evidence-based policies are to be achieved.</p

    A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics

    Get PDF
    Background: Genome-wide data are increasingly important in the clinical evaluation of human disease. However, the large number of variants observed in individual patients challenges the efficiency and accuracy of diagnostic review. Recent work has shown that systematic integration of clinical phenotype data with genotype information can improve diagnostic workflows and prioritization of filtered rare variants. We have developed visually interactive, analytically transparent analysis software that leverages existing disease catalogs, such as the Online Mendelian Inheritance in Man database (OMIM) and the Human Phenotype Ontology (HPO), to integrate patient phenotype and variant data into ranked diagnostic alternatives. Methods: Our tool, “OMIM Explorer” (http://www.omimexplorer.com), extends the biomedical application of semantic similarity methods beyond those reported in previous studies. The tool also provides a simple interface for translating free-text clinical notes into HPO terms, enabling clinical providers and geneticists to contribute phenotypes to the diagnostic process. The visual approach uses semantic similarity with multidimensional scaling to collapse high-dimensional phenotype and genotype data from an individual into a graphical format that contextualizes the patient within a low-dimensional disease map. The map proposes a differential diagnosis and algorithmically suggests potential alternatives for phenotype queries—in essence, generating a computationally assisted differential diagnosis informed by the individual’s personal genome. Visual interactivity allows the user to filter and update variant rankings by interacting with intermediate results. The tool also implements an adaptive approach for disease gene discovery based on patient phenotypes. Results: We retrospectively analyzed pilot cohort data from the Baylor Miraca Genetics Laboratory, demonstrating performance of the tool and workflow in the re-analysis of clinical exomes. Our tool assigned to clinically reported variants a median rank of 2, placing causal variants in the top 1 % of filtered candidates across the 47 cohort cases with reported molecular diagnoses of exome variants in OMIM Morbidmap genes. Our tool outperformed Phen-Gen, eXtasy, PhenIX, PHIVE, and hiPHIVE in the prioritization of these clinically reported variants. Conclusions: Our integrative paradigm can improve efficiency and, potentially, the quality of genomic medicine by more effectively utilizing available phenotype information, catalog data, and genomic knowledge

    Legal approaches regarding health-care decisions involving minors: implications for next-generation sequencing

    Get PDF
    The development of next-generation sequencing (NGS) technologies are revolutionizing medical practice, facilitating more accurate, sophisticated and cost-effective genetic testing. NGS is already being implemented in the clinic assisting diagnosis and management of disorders with a strong heritable component. Although considerable attention has been paid to issues regarding return of incidental or secondary findings, matters of consent are less well explored. This is particularly important for the use of NGS in minors. Recent guidelines addressing genomic testing and screening of children and adolescents have suggested that as ‘young children' lack decision-making capacity, decisions about testing must be conducted by a surrogate, namely their parents. This prompts consideration of the age at which minors can provide lawful consent to health-care interventions, and consequently NGS performed for diagnostic purposes. Here, we describe the existing legal approaches regarding the rights of minors to consent to health-care interventions, including how laws in the 28 Member States of the European Union and in Canada consider competent minors, and then apply this to the context of NGS. There is considerable variation in the rights afforded to minors across countries. Many legal systems determine that minors would be allowed, or may even be required, to make decisions about interventions such as NGS. However, minors are often considered as one single homogeneous population who always require parental consent, rather than recognizing there are different categories of ‘minors' and that capacity to consent or to be involved in discussions and decision-making process is a spectrum rather than a hurdle

    Genetic Variations Strongly Influence Phenotypic Outcome in the Mouse Retina

    Get PDF
    Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2-nb1 at embryonic day 18.5 (E18.5) and postnatal day 30.5 (P30.5). Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases

    Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa

    Get PDF
    Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world’s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63–5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the clades of the northern group but were similar among clades of the southern group. Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B–Ptr, Ptt-A and Pv-

    On the Origin of the Functional Architecture of the Cortex

    Get PDF
    The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory's simplicity, explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual cortex

    De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.

    Get PDF
    Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability

    From Computer Metaphor to Computational Modeling: The Evolution of Computationalism

    Get PDF
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working memory to show how modeling has progressed over the years. The methodological assumptions of new modeling work are best understood in the mechanistic framework, which is evidenced by the way in which models are empirically validated. Moreover, the methodological and theoretical progress in computational neuroscience vindicates the new mechanistic approach to explanation, which, at the same time, justifies the best practices of computational modeling. Overall, computational modeling is deservedly successful in cognitive (neuro)science. Its successes are related to deep conceptual connections between cognition and computation. Computationalism is not only here to stay, it becomes stronger every year
    corecore