186 research outputs found

    Experimental studies of Portevin-Le Chatelier plastic instabilities in carbon-manganese steels by infrared pyrometry

    Get PDF
    The dynamic strain aging (DSA) phenomenon that occurs in some materials under certain temperature and strain rate conditions can cause plastic strain localization in the form of Portevin-Le Chatelier (PLC) bands. Carbon-manganese steels are used commonly and frequently in construction because of their ductility, low cost and ability to form mechanically. In these steels, the DSA phenomenon occurs for common quasi-static strain rates from 150 to 300 °C, which makes band observation complicated. PLC bands on a carbon-manganese steel that was sensitive to DSA were studied using an infrared camera. Specimen heating was achieved using an induction furnace (with an adapted coil inductor), which allows for temperature recording during tensile tests. Thermography with an infrared camera was used to estimate the band characteristics and increments in band plastic strain, which is an important parameter for material behavior identification necessary for DSA phenomenon modeling. This technique had been developed only for PLC phenomenon observation at ambient temperature on aluminum alloys. Band characteristics on the carbon-manganese steels have been compared with results obtained previously on aluminum alloys

    The first radial velocity measurements of a microlensing event: no evidence for the predicted binary

    Full text link
    The gravitational microlensing technique allows the discovery of exoplanets around stars distributed in the disk of the galaxy towards the bulge. However, the alignment of two stars that led to the discovery is unique over the timescale of a human life and cannot be re-observed. Moreover, the target host is often very faint and located in a crowded region. These difficulties hamper and often make impossible the follow-up of the target and study of its possible companions. Gould et al. (2013) predicted the radial-velocity curve of a binary system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT, ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To gather high-precision on faint targets of microlensing events, we proposed to use the source star as a reference to measure the lens radial velocities. We obtained ten radial velocities on the putative V=18 lens with a dispersion of ~100 m/s, spread over one year. Our measurements do not confirm the microlensing prediction for this binary system. The most likely scenario is that the assumed V=18 mag lens is actually a blend and not the primary lens that is 2 magnitude fainter. Further observations and analyses are needed to understand the microlensing observation and infer on the nature and characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette

    WFIRST Exoplanet Mass-measurement Method Finds a Planetary Mass of 39 ± 8 M_⊕ for OGLE-2012-BLG-0950Lb

    Get PDF
    We present the analysis of the simultaneous high-resolution images from the Hubble Space Telescope and Keck adaptive optics system of the planetary event OGLE-2012-BLG-0950 that determine that the system consists of a 0.58 ± 0.04 M_⊕ host star orbited by a 39 ± 8 M_⊕ planet at a projected separation of 2.54 ± 0.23 au. The planetary system is located at a distance of 2.19 ± 0.23 kpc from Earth. This is the second microlens planet beyond the snow line with a mass measured to be in the mass range 20–80 M_⊕. The runaway gas accretion process of the core accretion model predicts fewer planets in this mass range. This is because giant planets are thought to be growing rapidly at these masses, and they rarely complete growth at this mass. So this result suggests that the core accretion theory may need revision. This analysis also demonstrates the techniques that will be used to measure the masses of planets and their host stars by the WFIRST exoplanet microlensing survey: one-dimensional microlensing parallax combined with the separation and brightness measurement of the unresolved source and host stars to yield multiple redundant constraints on the masses and distance of the planetary system

    RoboTAP: Target priorities for robotic microlensing observations

    Get PDF
    Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network. Aims. Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies. Methods. Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events. Results. We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys

    OGLE-2014-BLG-0289: Precise Characterization of a Quintuple-peak Gravitational Microlensing Event

    Get PDF
    We present the analysis of the binary-microlensing event OGLE-2014-BLG-0289. The event light curve exhibits five very unusual peaks, four of which were produced by caustic crossings and the other by a cusp approach. It is found that the quintuple-peak features of the light curve provide tight constraints on the source trajectory, enabling us to precisely and accurately measure the microlensing parallax πE. Furthermore, the three resolved caustics allow us to measure the angular Einstein radius θE. From the combination of πE and θE, the physical lens parameters are uniquely determined. It is found that the lens is a binary composed of two M dwarfs with masses M1 = 0.52 ± 0.04 M⊙ and M2 = 0.42 ± 0.03 M⊙ separated in projection by a⊥ = 6.4 ± 0.5 au. The lens is located in the disk with a distance of DL = 3.3 ± 0.3 kpc. The reason for the absence of a lensing signal in the Spitzer data is that the time of observation corresponds to the flat region of the light curve

    <i>Spitzer</i> microlens measurement of a massive remnant in a well-separated binary

    Get PDF
    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the "microlens parallax" effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations

    Large carnivore expansion in Europe is associated with human population density and land cover changes

    Get PDF
    Aim: The recent recovery of large carnivores in Europe has been explained as resulting from a decrease in human persecution driven by widespread rural land abandonment, paralleled by forest cover increase and the consequent increase in availability of shelter and prey. We investigated whether land cover and human population density changes are related to the relative probability of occurrence of three European large carnivores: the grey wolf (Canis lupus), the Eurasian lynx (Lynx lynx) and the brown bear (Ursus arctos). Location: Europe, west of 64° longitude. Methods: We fitted multi-temporal species distribution models using &gt;50,000 occurrence points with time series of land cover, landscape configuration, protected areas, hunting regulations and human population density covering a 24-year period (1992–2015). Within the temporal window considered, we then predicted changes in habitat suitability for large carnivores throughout Europe. Results: Between 1992 and 2015, the habitat suitability for the three species increased in Eastern Europe, the Balkans, North-West Iberian Peninsula and Northern Scandinavia, but showed mixed trends in Western and Southern Europe. These trends were primarily associated with increases in forest cover and decreases in human population density, and, additionally, with decreases in the cover of mosaics of cropland and natural vegetation. Main conclusions: Recent land cover and human population changes appear to have altered the habitat suitability pattern for large carnivores in Europe, whereas protection level did not play a role. While projected changes largely match the observed recovery of large carnivore populations, we found mismatches with the recent expansion of wolves in Central and Southern Europe, where factors not included in our models may have played a dominant role. This suggests that large carnivores’ co-existence with humans in European landscapes is not limited by habitat availability, but other factors such as favourable human tolerance and policy
    corecore