1,289 research outputs found

    PIN10 Fourth Year Post-Rotavirus Vaccination in Belgium: Decrease of Rotavirus-Positive Stool Samples in Hospitalised Children

    Get PDF

    PIH13 Generalising the Output of Rotavirus Vaccination Impact Studies: What Can We Learn?

    Get PDF

    The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    Get PDF
    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH<sub>4</sub>), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NO<sub>x</sub>) up to the year 2030 and implemented them in two global Chemistry Transport Models. The 'Current Legislation' (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a 'Maximum technically Feasible Reduction' (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NO<sub>x</sub>, NMVOC and CO than was suggested by the widely used and more pessimistic IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000), which made Business-as-Usual assumptions regarding emission control technology. With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH<sub>4</sub>, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce broadly the observed trends in CO, and CH<sub>4</sub> concentrations from 1990 to 2002. <P style='line-height: 20px;'> For the 'current legislation' case, both models indicate an increase of the annual average ozone levels in the Northern Hemisphere by 5ppbv, and up to 15ppbv over the Indian sub-continent, comparing the 2020s (2020-2030) with the 1990s (1990-2000). The corresponding higher ozone and methane burdens in the atmosphere increase radiative forcing by approximately 0.2 Wm<sup>-2</sup>. Full application of today's emissions control technologies, however, would bring down ozone below the levels experienced in the 1990s and would reduce the radiative forcing of ozone and methane to approximately -0.1 Wm<sup>-2</sup>. This can be compared to the 0.14-0.47 Wm<sup>-2</sup> increase of methane and ozone radiative forcings associated with the SRES scenarios. While methane reductions lead to lower ozone burdens and to less radiative forcing, further reductions of the air pollutants NO<sub>x</sub> and NMVOC result in lower ozone, but at the same time increase the lifetime of methane. Control of methane emissions appears an efficient option to reduce tropospheric ozone as well as radiative forcing

    Use of the FAO AquaCrop model in developing sowing guidelines for rainfed maize in Zimbabwe

    Get PDF
    This paper presents a procedure in which the water-driven water productivity model AquaCrop was fine-tuned and validated for maize for the local conditions in Zimbabwe and then applied to develop sowing management options for decision support. Data from experiments of 2 seasons in Harare and from 5 other sites around Zimbabwe were used for the local calibration and validation of AquaCrop. Model parameters such as the reference harvest index (HIo); the canopy growth coefficient (CGC); early canopy decline and normalised biomass water productivity (WPb*) were adjusted during model calibration. Model performance was satisfactory after calibration with a Nash-Sutcliffe model efficiency parameter (EF = 0.81), RMSE = 15% and R2 = 0.86 upon validation. To develop sowing guidelines, historical climate series from 13 meteorological stations around Zimbabwe were used to simulate maize yield for 6 consecutive sowing dates determined according to criteria applicable in Zimbabwe. Three varieties and typical shallow and deep soil types were considered in the simulation scenarios. The simulated yield was analysed by an optimisation procedure to select the optimum sowing time that maximised long-term mean yield. Results showed that highest yields depended on the climate of the site (rainfall availability), variety (length of growing cycle) and soil depth (soil water storage capacity). The late variety gave higher mean yields for all sowing dates in the maize belt. Staggered sowing is recommended as a way of combating the effects of rainfall variability and as an answer to labour constraints.Keywords: biomass water productivity, AquaCrop, maize sowing dates, crop modellin

    Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy

    Get PDF
    We have developed a method for imaging the temperature-frequency dependence of the dynamics of nanostructured polymer films with spatial resolution. This method provides images with dielectric compositional contrast well decoupled from topography. Using frequency-modulation electrostatic-force-microscopy, we probe the local frequency-dependent (0.1–100 Hz) dielectric response through measurement of the amplitude and phase of the force gradient in response to an oscillating applied electric field. When the phase is imaged at fixed frequency, it reveals the spatial variation in dielectric losses, i.e., the spatial variation in molecular/dipolar dynamics, with 40 nm lateral resolution. This is demonstrated by using as a model system; a phase separated polystyrene/polyvinyl-acetate (PVAc) blend. We show that nanoscale dynamic domains of PVAc are clearly identifiable in phase images as those which light-up in a band of temperature, reflecting the variations in the molecular/dipolar dynamics approaching the glass transition temperature of PVAc

    AquaCrop-OS: An open source version of FAO's crop water productivity model

    Get PDF
    AbstractCrop simulation models are valuable tools for quantifying crop yield response to water, and for devising strategies to improve agricultural water management. However, applicability of the majority of crop models is limited greatly by a failure to provide open-access to model source code. In this study, we present an open-source version of the FAO AquaCrop model, which simulates efficiently water-limited crop production across diverse environmental and agronomic conditions. Our model, called AquaCrop-OpenSource (AquaCrop-OS), can be run in multiple programming languages and operating systems. Support for parallel execution reduces significantly simulation times when applying the model in large geospatial frameworks, for long-run policy analysis, or for uncertainty assessment. Furthermore, AquaCrop-OS is compliant with the Open Modelling Interface standard facilitating linkage to other disciplinary models, for example to guide integrated water resources planning

    Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology

    Get PDF
    Increasingly serious shortages of water make it imperative to improve the efficiency of irrigation in agriculture, horticulture and in the maintenance of urban landscapes. The main aim of the current review is to identify ways of meeting this objective. After reviewing current irrigation practices, discussion is centred on the sensitivity of crops to water deficit, the finding that growth of many crops is unaffected by considerable lowering of soil water content and, on this basis, the creation of improved means of irrigation scheduling. Subsequently, attention is focused on irrigation problems associated with spatial variability in soil water and the often slow infiltration of water into soil, especially the subsoil. As monitoring of soil water is important for estimating irrigation requirements, the attributes of the two main types of soil water sensors and their most appropriate uses are described. Attention is also drawn to the contribution of wireless technology to the transmission of sensor outputs. Rapid progress is being made in transmitting sensor data, obtained from different depths down the soil profile across irrigated areas, to a PC that processes the data and on this basis automatically commands irrigation equipment to deliver amounts of water, according to need, across the field. To help interpret sensor outputs, and for many other reasons, principles of water processes in the soil–plant system are incorporated into simulation models that are calibrated and tested in field experiments. Finally, it is emphasized that the relative importance of the factors discussed in this review to any particular situation varies enormously

    Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers

    Get PDF
    Blockade of the inhibitory PD-1/PD-L1 immune checkpoint axis is a promising cancer treatment. Nonetheless, a significant number of patients and malignancies do not respond to this therapy. To develop a screen for response to PD-1/PD-L1 inhibition, it is critical to develop a non-invasive tool to accurately assess dynamic immune checkpoint expression. Here we evaluated non-invasive SPECT/CT imaging of PD-L1 expression, in murine tumor models with varying PD-L1 expression, using high affinity PD-L1-specific nanobodies (Nbs). We generated and characterized 37 Nbs recognizing mouse PD-L1. Among those, four Nbs C3, C7, E2 and E4 were selected and evaluated for preclinical imaging of PD-L1 in syngeneic mice. We performed SPECT/CT imaging in wild type versus PD-L1 knock-out mice, using Technetium-99m (99mTc) labeled Nbs. Nb C3 and E2 showed specific antigen binding and beneficial biodistribution. Through the use of CRISPR/Cas9 PD-L1 knock-out TC-1 lung epithelial cell lines, we demonstrate that SPECT/CT imaging using Nb C3 and E2 identifies PD-L1 expressing tumors, but not PD-L1 non-expressing tumors, thereby confirming the diagnostic potential of the selected Nbs. In conclusion, these data show that Nbs C3 and E2 can be used to non-invasively image PD-L1 levels in the tumor, with the strength of the signal correlating with PD-L1 levels. These findings warrant further research into the use of Nbs as a tool to image inhibitory signals in the tumor environment
    corecore