111 research outputs found

    Survival Motor Neuron (SMN) protein is required for normal mouse liver development

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA

    Multi-institutional evaluation of a Pareto navigation guided automated radiotherapy planning solution for prostate cancer

    Get PDF
    \ua9 The Author(s) 2024.Background: Current automated planning solutions are calibrated using trial and error or machine learning on historical datasets. Neither method allows for the intuitive exploration of differing trade-off options during calibration, which may aid in ensuring automated solutions align with clinical preference. Pareto navigation provides this functionality and offers a potential calibration alternative. The purpose of this study was to validate an automated radiotherapy planning solution with a novel multi-dimensional Pareto navigation calibration interface across two external institutions for prostate cancer. Methods: The implemented ‘Pareto Guided Automated Planning’ (PGAP) methodology was developed in RayStation using scripting and consisted of a Pareto navigation calibration interface built upon a ‘Protocol Based Automatic Iterative Optimisation’ planning framework. 30 previous patients were randomly selected by each institution (IA and IB), 10 for calibration and 20 for validation. Utilising the Pareto navigation interface automated protocols were calibrated to the institutions’ clinical preferences. A single automated plan (VMATAuto) was generated for each validation patient with plan quality compared against the previously treated clinical plan (VMATClinical) both quantitatively, using a range of DVH metrics, and qualitatively through blind review at the external institution. Results: PGAP led to marked improvements across the majority of rectal dose metrics, with Dmean reduced by 3.7 Gy and 1.8 Gy for IA and IB respectively (p < 0.001). For bladder, results were mixed with low and intermediate dose metrics reduced for IB but increased for IA. Differences, whilst statistically significant (p < 0.05) were small and not considered clinically relevant. The reduction in rectum dose was not at the expense of PTV coverage (D98% was generally improved with VMATAuto), but was somewhat detrimental to PTV conformality. The prioritisation of rectum over conformality was however aligned with preferences expressed during calibration and was a key driver in both institutions demonstrating a clear preference towards VMATAuto, with 31/40 considered superior to VMATClinical upon blind review. Conclusions: PGAP enabled intuitive adaptation of automated protocols to an institution’s planning aims and yielded plans more congruent with the institution’s clinical preference than the locally produced manual clinical plans

    Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy

    Get PDF
    Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo

    Anti-EGFR Antibody Efficiently and Specifically Inhibits Human TSC2−/− Smooth Muscle Cell Proliferation. Possible Treatment Options for TSC and LAM

    Get PDF
    BACKGROUND: Tuberous sclerosis complex (TSC), a tumor syndrome caused by mutations in TSC1 or TSC2 genes, is characterized by the development of hamartomas. We previously isolated, from an angiomyolipoma of a TSC2 patient, a homogenous population of smooth muscle-like cells (TSC2(-/-) ASM cells) that have a mutation in the TSC2 gene as well as TSC2 loss of heterozygosity (LOH) and consequently, do not produce the TSC2 gene product, tuberin. TSC2(-/-) ASM cell proliferation is EGF-dependent. METHODS AND FINDINGS: Effects of EGF on proliferation of TSC2(-/-) ASM cells and TSC2(-/-) ASM cells transfected with TSC2 gene were determined. In contrast to TSC2(-/-) ASM cells, growth of TSC2-transfected cells was not dependent on EGF. Moreover, phosphorylation of Akt, PTEN, Erk and S6 was significantly decreased. EGF is a proliferative factor of TSC2(-/-) ASM cells. Exposure of TSC2(-/-) ASM cells to anti-EGFR antibodies significantly inhibited their proliferation, reverted reactivity to HMB45 antibody, a marker of TSC2(-/-) cell phenotype, and inhibited constitutive phosphorylation of S6 and ERK. Exposure of TSC2(-/-) ASM cells to rapamycin reduced the proliferation rate, but only when added at plating time. Although rapamycin efficiently inhibited S6 phosphorylation, it was less efficient than anti-EGFR antibody in reverting HMB45 reactivity and blocking ERK phosphorylation. In TSC2(-/-) ASM cells specific PI3K inhibitors (e.g. LY294002, wortmannin) and Akt1 siRNA had little effect on S6 and ERK phosphorylation. Following TSC2-gene transfection, Akt inhibitor sensitivity was observed. CONCLUSION: Our results show that an EGF independent pathway is more important than that involving IGF-I for growth and survival of TSC(-/-) ASM cells, and such EGF-dependency is the result of the lack of tuberin

    Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment

    Get PDF
    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells

    Phosphatase and tensin homologue: a therapeutic target for SMA

    Get PDF
    Spinal muscular atrophy (SMA) is one of the most common juvenile neurodegenerative diseases, which can be associated with child mortality. SMA is caused by a mutation of ubiquitously expressed gene, Survival Motor Neuron1 (SMN1), leading to reduced SMN protein and the motor neuron death. The disease is incurable and the only therapeutic strategy to follow is to improve the expression of SMN protein levels in motor neurons. Significant numbers of motor neurons in SMA mice and SMA cultures are caspase positive with condensed nuclei, suggesting that these cells are prone to a process of cell death called apoptosis. Searching for other potential molecules or signaling pathways that are neuroprotective for central nervous system (CNS) insults is essential for widening the scope of developmental medicine. PTEN, a Phosphatase and Tensin homologue, is a tumor suppressor, which is widely expressed in CNS. PTEN depletion activates anti-apoptotic factors and it is evident that the pathway plays an important protective role in many neurodegenerative disorders. It functions as a negative regulator of PIP3/AKT pathway and thereby modulates its downstream cellular functions through lipid phosphatase activity. Moreover, previous reports from our group demonstrated that, PTEN depletion using viral vector delivery system in SMN delta7 mice reduces disease pathology, with significant rescue on survival rate and the body weight of the SMA mice. Thus knockdown/depletion/mutation of PTEN and manipulation of PTEN medicated Akt/PKB signaling pathway may represent an important therapeutic strategy to promote motor neuron survival in SMA

    Vigilância do desenvolvimento neuropsicomotor de crianças de um programa DST/AIDS

    Get PDF
    A terapia anti-retroviral de alta potência (TARV) é uma forma eficaz de prevenção da transmissão do vírus HIV de mãe para filho. No entanto, os estudos ainda investigam os efeitos da exposição intraútero à TARV, dentre eles o atraso no desenvolvimento neuropsicomotor (DNPM). O presente estudo apresenta o relato de um projeto de extensão, cujos objetivos foram verificar o DNPM de crianças de um programa DST/AIDS, orientar as famílias considerando seu contexto socioeconômico e realizar encaminhamentos para serviços de saúde específicos. A vigilância do DNPM foi feita em três etapas: (1) avaliação em ambulatório; (2) avaliação e orientações em domicílio; (3) elaboração de relatórios aos gestores de saúde. Foram utilizados os testes DENVER II e o PEDI, além de um questionário socioeconômico. Participam do programa DST/AIDS 15 crianças, sendo 12 soro-revertidas, 1 soropositiva e 2 indefinidas. Doze crianças foram avaliadas, e os domínios mais comprometidos foram linguagem, pessoal-social e motor fino, respectivamente. Quanto ao nível econômico, 73,3% pertenciam ao nível E, e 58,3% das mães eram analfabetas ou cursaram apenas o primário. Crianças filhas de mães HIV positivo, além de fatores biológicos, geralmente estão expostas a fatores de risco ambientais que contribuem para alterações do DNPM. Desta forma, o acompanhamento por uma equipe de profissionais de saúde, em parceria com a família da criança, torna-se uma importante ferramenta para a identificação e intervenção precoce.Highly active antiretroviral therapy (HAART) is an effective way of preventing mother-to-child transmission of HIV. However, further studies investigate the effects of short and long term exposure to HAART in-utero and its consequence on child neuropsychomotor development (NPMD). The paper presents a report and discussion of results of an extension project whose objectives were to verify the NPMD of children participating of the STD/AIDS program, to orientate families according to their socioeconomic context and make referrals to specific health services. The NPMD surveillance was divided into three parts: (1) ambulatory evaluation; (2) home evaluation and orientations; (3) reporting health managers. DENVER II and PEDI tests were used and also a socioeconomic questionnaire. Fifteen children were on the program of which 12 uninfected, 1 HIV+ and 2 indeterminate. Twelve children were evaluated and the most impaired domain were language, personal-social and fine motor, respectively. Regarding to socioeconomic status, 73,3% were E level and 58,3% of mothers were analphabet or had primary school. Children born of infected mothers, besides the biological risks, usually are exposed to environment/social risks that can affect the NPMD. Thus, monitoring by a team of health professionals, in partnership with the child's family, becomes an important tool for identification and early intervention

    Multiple Phosphatidylinositol 3-Kinases Regulate Vaccinia Virus Morphogenesis

    Get PDF
    Poxvirus morphogenesis is a complex process that involves the successive wrapping of the virus in host cell membranes. We screened by plaque assay a focused library of kinase inhibitors for those that caused a reduction in viral growth and identified several compounds that selectively inhibit phosphatidylinositol 3-kinase (PI3K). Previous studies demonstrated that PI3Ks mediate poxviral entry. Using growth curves and electron microscopy in conjunction with inhibitors, we show that that PI3Ks additionally regulate morphogenesis at two distinct steps: immature to mature virion (IMV) transition, and IMV envelopment to form intracellular enveloped virions (IEV). Cells derived from animals lacking the p85 regulatory subunit of Type I PI3Ks (p85α−/−β−/−) presented phenotypes similar to those observed with PI3K inhibitors. In addition, VV appear to redundantly use PI3Ks, as PI3K inhibitors further reduce plaque size and number in p85α−/−β−/− cells. Together, these data provide evidence for a novel regulatory mechanism for virion morphogenesis involving phosphatidylinositol dynamics and may represent a new therapeutic target to contain poxviruses
    • …
    corecore