305 research outputs found

    LTRo: Learning to Route Queries in Clustered P2P IR

    Get PDF
    Query Routing is a critical step in P2P Information Retrieval. In this paper, we consider learning to rank approaches for query routing in the clustered P2P IR architecture. Our formulation, LTRo, scores resources based on the number of relevant documents for each training query, and uses that information to build a model that would then rank promising peers for a new query. Our empirical analysis over a variety of P2P IR testbeds illustrate the superiority of our method against the state-of-the-art methods for query routing

    The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    Get PDF
    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.Comment: 19 page

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Individualizing therapy – in search of approaches to maximize the benefit of drug treatment (II)

    Get PDF
    Adjusting drug therapy to the individual, a common approach in clinical practice, has evolved from 1) dose adjustments based on clinical effects to 2) dose adjustments made in response to drug levels and, more recently, to 3) dose adjustments based on deoxyribonucleic acid (DNA) sequencing of drug-metabolizing enzyme genes, suggesting a slow drug metabolism phenotype. This development dates back to the middle of the 20(th )century, when several different drugs were administered on the basis of individual plasma concentration measurements. Genetic control of drug metabolism was well established by the 1960s, and pharmakokinetic-based individualized therapy was in use by 1973

    Importance of Glycosylation on Function of a Potassium Channel in Neuroblastoma Cells

    Get PDF
    The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type), partially glycosylated (N220Q and N229Q), and unglycosylated (N220Q/N229Q) Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel

    An evolutionary strategy with machine learning for learning to rank in information retrieval

    Get PDF
    Learning to Rank (LTR) is one of the problems in Information Retrieval (IR) that nowadays attracts attention from researchers. The LTR problem refers to ranking the retrieved documents for users in search engines, question answering and product recommendation systems. There is a number of LTR approaches based on machine learning and computational intelligence techniques. Most existing LTR methods have limitations, like being too slow or not being very effective or requiring large computer memory to operate. This paper proposes a LTR method that combines a (1+1)-Evolutionary Strategy with machine learning. Three variants of the method are investigated: ES-Rank, IESR-Rank and IESVMRank. They differ on the mechanism to initialize the chromosome for the evolutionary process. ES-Rank simply sets all genes in the initial chromosome to the same value. IESRRank uses linear regression and IESVM-Rank uses support vector machine for the initialization process. Experimental results from comparing the proposed method to fourteen other approaches from the literature show that IESRRank achieves the overall best performance. Ten problem instances are used here, obtained from four datasets: MSLR-WEB10K, LETOR 3 and LETOR 4. Performance is measured at the top-10 query-document pairs retrieved, using five metrics: Mean Average Precision (MAP), Root Mean Square Error (RMSE), Precision (P@10), Reciprocal Rank (RR@10) and Normalized Discounted Cumulative Gain (NDCG@10). The contribution of this paper is an effective and efficient LTR method combining a listwise evolutionary technique with point-wise and pair-wise machine learning techniques

    A Sterol-Regulatory Element Binding Protein Is Required for Cell Polarity, Hypoxia Adaptation, Azole Drug Resistance, and Virulence in Aspergillus fumigatus

    Get PDF
    At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive. Currently, whether hypoxia adaptation is an important virulence attribute of opportunistic pathogenic molds is unknown. Here we report the characterization of a sterol-regulatory element binding protein, SrbA, in the opportunistic pathogenic mold, Aspergillus fumigatus. Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA). Transcriptional profiling revealed 87 genes that are affected by loss of SrbA function. Annotation of these genes implicated SrbA in maintaining sterol biosynthesis and hyphal morphology. Further examination of the SrbA null mutant consequently revealed that SrbA plays a critical role in ergosterol biosynthesis, resistance to the azole class of antifungal drugs, and in maintenance of cell polarity in A. fumigatus. Significantly, the SrbA null mutant was highly susceptible to fluconazole and voriconazole. Thus, these findings present a new function of SREBP proteins in filamentous fungi, and demonstrate for the first time that hypoxia adaptation is likely an important virulence attribute of pathogenic molds

    A pragmatic approach to resolving technological unfairness: The case of Nike’s Vaporfly & Alphafly running footwear

    Get PDF
    Background Technology is often introduced into sport to facilitate it or to improve human performance within it. On occasion, some forms of novel technology require regulation or prevention entirely to ensure that a sport remains fair and accessible. Recently, the Nike Vaporfly and Alphafly shoes have received some concerns over their appropriateness for use in competitive distance running. Methods This paper evaluates the use of these shoes against an existing framework for sports technology discourse and adopts a pragmatic approach to attempt to resolve them. Results It is proposed that the three concerns regarding cost, access and coercion cannot be ruled out but likely remain short term issues. As a result, it is proposed that these running shoes are acceptable forms of technology but that ongoing vigilance will be required as such technologies develop further in the future. Conclusions The Nike Vaporfly/Alphafly shoes do push the perceived acceptability of running shoes to the limits of the current sports regulations. However, the alleged gains have not manifested themselves to a level that could be considered excessive when reviewing historical performances or when evaluated against a set of well-cited criteria. The sport will need to adopt a stance of ongoing vigilance as such technologies continue to develop or be optimised in the future

    Tuning hardness in calcite by incorporation of amino acids

    Get PDF
    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure–property relationships of even the simplest building unit—mineral single crystals containing embedded macromolecules—remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0–7 mol%) or aspartic acid (0–4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules
    corecore