
Noname manuscript No.
(will be inserted by the editor)

An Evolutionary Strategy with Machine Learning for
Learning to Rank in Information Retrieval

O. Ibrahim · D. Landa-Silva

Received: date / Accepted: date

Abstract Learning to Rank (LTR) is one of

the problems in Information Retrieval (IR) that

nowadays attracts attention from researchers.

The LTR problem refers to ranking the re-

trieved documents for users in search engines,

question answering and product recommenda-

tion systems. There is a number of LTR ap-

proaches based on machine learning and com-

putational intelligence techniques. Most exist-

ing LTR methods have limitations, like being

too slow or not being very effective or requir-

ing large computer memory to operate. This

paper proposes a LTR method that combines

a (1+1)-Evolutionary Strategy with machine

learning. Three variants of the method are in-

vestigated: ES-Rank, IESR-Rank and IESVM-

Rank. They differ on the mechanism to ini-

tialize the chromosome for the evolutionary

process. ES-Rank simply sets all genes in the

Osman Ali Sadek Ibrahim
School of Computer Science
ASAP Research Group
The University of Nottingham, UK
CS. Dept., Minia University, Egypt
E-mail: osmaneg200@gmail.com

Dario Landa-Silva
School of Computer Science
ASAP Research Group
The University of Nottingham, UK
E-mail: dario.landasilva@nottingham.ac.uk

initial chromosome to the same value. IESR-

Rank uses linear regression and IESVM-Rank

uses support vector machine for the initializa-

tion process. Experimental results from com-

paring the proposed method to fourteen other

approaches from the literature show that IESR-

Rank achieves the overall best performance.

Ten problem instances are used here, obtained

from four datasets: MSLR-WEB10K, LETOR

3 and LETOR 4. Performance is measured at

the top-10 query-document pairs retrieved, us-

ing five metrics: Mean Average Precision (MAP),

Root Mean Square Error (RMSE), Precision

(P@10), Reciprocal Rank (RR@10) and Nor-

malized Discounted Cumulative Gain (NDCG@10).

The contribution of this paper is an effective

and efficient LTR method combining a list-

wise evolutionary technique with point-wise and

pair-wise machine learning techniques.

Keywords Learning to Rank · Evolution

Strategy · Linear Regression · Support Vector

Machine

1 Introduction

Ranking the retrieved documents responding

to the user query, with respect to the relevance

of the documents for the query, is an impor-

tant task in Information Retrieval (IR). In the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/145234355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 O. Ibrahim, D. Landa-Silva

early IR research, unsupervised scoring meth-

ods such as TF-IDF, Okapi-BM25 and lan-

guage models among others were used (Man-

ning et al., 2008). Using only one scoring method

in IR systems is not very efficient. Moreover,

the accuracy of results produced by learning

models such as Okapi-BM25 and language mod-

els is dependent on the relevance judgment

(Tonon et al., 2015; Urbano, 2016; Ibrahim

and Landa-Silva, 2016). This inspires the need

for using more than one scoring method for

ranking retrieved documents with respect to

the user queries. In addition, it is also impor-

tant that other features such as the business

importance of the documents on the web and

the host server among other desirable features

are considered for the ranking of documents.

Recently, Qin et. al. proposed a new trend in

the research on ranking documents by produc-

ing the LETOR datasets (Qin et al., 2010).

These datasets are distilled benchmarks from

search engines and from the well-known TREC

conference collections. These benchmarks con-

tain more than one scoring weighting scheme

as part of the benchmark features. They also

contain some other features that indicate the

importance of the documents on the web. The

documents in these datasets were mapped into

fully judged query-document pairs for Learn-

ing to Rank (LTR) research problems.

Previous work described an LTR approach

called ES-Rank based on an evolutionary strat-

egy (Ibrahim and Landa-Silva, 2017). The per-

formance of that method was competitive when

compared to fourteen other approaches from

the literature. ES-Rank produced better re-

sults but only in about 30% of the problem

settings. Further research has resulted in the

incorporation of machine learning techniques

into ES-Rank as described in this paper. More-

over, a more thorough experimental compari-

son is conducted here to evaluate the perfor-

mance of the proposed method using a larger

set of problem instances and five performance

metrics.

The intended contribution of this paper is

to present an effective and efficient method for

LTR that combines an evolutionary strategy

with machine learning techniques. The pro-

posed method is an evolutionary strategy that

evolves a vector of weights where each weight

represents a desirable document feature. Three

methods to initialize the vector of weights (chro-

mosome) are investigated here: simply setting

all weights to zero, initializing with Linear Re-

gression and initializing with a Support Vector

Machine. In order to assess the performance of

the proposed method at top-10 query-document

pairs retrieved, the following five metrics are

used in a comparative analysis to fourteen state-

of-the-art LTR methods from the literature:

Mean Average Precision (MAP), Root Mean

Square Error (RMSE), Normalized Discounted

Cumulative Gain (NDCG), Reciprocal Rank-

ing (RR) and Precision (P) (Liu, 2011; Li,

2014). Experimental results in this paper show

that the proposed method performs very well

and that the better initialization technique is

Linear Regression (LR) as it helps to achieve

the best overall results. Furthermore, most of

the other methods compared consume very long

computation time (up to 7 hours) while the

proposed method is much faster. Another im-

portant feature of the proposed method is that

the computer memory required for it to oper-

ate is modest, only in the order of (2 × M)

where M is the number of features in the train-

ing dataset.

The rest of the paper is organized as fol-

lows. Section 2 provides a discussion on the
background of the LTR problem in IR, while

section 3 presents a brief literature review of

related work in this subject. The proposed LTR

method is described in section 4. Experimental

results are presented in section 5, while con-

clusions and proposed future work are given

in Section 6.

2 Background

In the context of Information Retrieval (IR), a

LTR dataset consists of query-document pairs

for a large number of queries (Qin et al.,

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 3

Table 1: Query-Document Pairs Representation in Learning to Rank (LTR)

Relevance Label QueryId:id Feature Vector

1 qid:1 1:0.1 2:0.8 4:0.5N:M

0 qid:1 1:0.9 2:0.6 4:0.2N:M

1 qid:1 1:0.1 2:0.8 4:0.5N:M

1 qid:2 1:0.2 2:0.4 4:0.5N:M

0 qid:2 1:0.3 2:0.7 4:0.3N:M

1 qid:3 1:0.4 2:0.3 4:0.5N:M

Fig. 1: Architecture of a Learning to Rank Approach as Discussed in (Liu, 2009).

2010). Table 1 shows a representation of sev-

eral query-document pairs. Each pair contains

a relevance label indicating the relevance de-

gree of the document for each query. In most

cases, the relevance labels are binary where 1

means relevant and 0 means irrelevant. There

is also a query identifier (id) indicating the

corresponding query for each query-document

pair. The feature vector refers to M other fea-

tures such as Term-Weighting Scores (e.g. TF-

IDF, Okapi-BM25 and Language Models (Qin

et al., 2010)), PageRank and Host Server Im-

portance, features associated to each query-

document pair in the LTR dataset. Each fea-

ture in the Feature Vector has the form Fea-

tureID:FeatureValue, where FeatureValue is

the contribution value of this feature in the

query-document pair. The dataset itself is di-

vided into N folds (usually LTR datasets have

5 folds) and each fold contains training, vali-

dation and testing sets for the query-document

pairs. These folds are useful for examining the

behaviour and predictive performance of LTR

methods by applying them on test sets differ-
ent to the training sets. More details about

the organisation of LTR datasets and query-

document pairs are given in (Qin et al., 2010;

Qin and Liu, 2013).

Recently, LTR as a method based on su-

pervised learning, has been widely used in

IR to produce ranking functions based on

the training datasets. The ranking function is

used to rank the retrieved documents in re-

sponse to the user query. Figure 1 shows the

general LTR approach architecture that most

learning-based approaches follow to deal with

the IR ranking problem. It starts with the

training set made of query-document pairs be-

4 O. Ibrahim, D. Landa-Silva

ing the input to a computational intelligence

or machine learning technique (Li, 2014). The

ranking model or ranking function is created

and then used to rank the search results for

the user queries. The ranking model can also

be used in the test phase to measure the pre-

dictive performance of the ranking algorithm

on the test datasets. The resulting ranking sys-

tem will produce an ordered list of documents

retrieved from the document collection in re-

sponse to the search. The next section reviews

some of the existing LTR approaches in order

to set the context for the method proposed in

this paper.

3 Related Work

There are three categories of LTR methods

(Liu, 2009): (1) the point-wise method, (2)

the pair-wise method and (3) the list-wise

method. These categories are based on the loss

function or fitness function measurements.

The point-wise approach views each single

object (query-document pair) as the learning

instance. Examples of point-wise approach

are Linear Regression (Yan and Su, 2009),

Boosting (Freund et al., 2003), Gradient

Boosted Regression Trees (MART or GBRT)

(Friedman, 2001; Mohan et al., 2011) and

Random Forest (RF) (Breiman, 2001). The

pair-wise approach views the pair of objects

(two query-document pairs for the same

query) as the learning instance. Examples of

the pair-wise approach are RankNET (Burges

et al., 2005) which is based on neural net-

works, as well as RankBoost and SVMRank

(Li, 2014) which are based on support vector

machines. The list-wise approach takes the

entire list of objects retrieved (the list of

query-document pairs for each query) as the

learning instance. Examples of the list-wise

approach are ListNET (Cao et al., 2007)

which is based in neural networks, RankGP

(Lin et al., 2012; Mick, 2016), Coordinate

Ascent (Metzler and Bruce Croft, 2007),

AdaRank (Xu and Li, 2007) and RankGPES

(Islam, 2013).

Although list-wise methods have been

shown to perform better regarding accuracy

than point-wise and pair-wise approaches (Cao

et al., 2007), the need to improve the perfor-

mance of LTR approaches has motivated re-

searchers to propose hybrid methods as well.

For example, Sculley proposed an approach

(CoRR) combining linear regression (point-

wise) with support vector machine (pair-wise)

(Sculley, 2010). That approach is implemented

in the Sofia-ml package and while it executes

in reasonable computational time, its perfor-

mance in terms of NDCG and MAP is lim-

ited. In order to achieve better NDCG, Mo-

han et al. proposed a hybrid machine learn-

ing approach for initializing GBRT using Ran-

dom Forest (Mohan et al., 2011). However,

experiments showed that their approach con-

sumes too much run-time compared to other

approaches from the literature (Dang, 2016;

Li, 2014). Two other hybrid approaches are

LambdaRank and LambdaMART which com-

bine pair-wise with list-wise methods (Burges,

2010). LambdaRank is based on RankNET

while LambdaMART is the boosted tree

from LambdaRank. Both LambdaMART and

LambdaRank have shown better performance

regarding IR accuracy than the method by

Mohan et. al. on the Yahoo! LTR Challenge

(Chapelle and Chang, 2011). Most of the LTR
approaches still have some limitation on the

computational run-time or the achieved accu-

racy of the predictive results. However, the

combination of list-wise and point-wise tech-

niques has shown to be promising. Muahmmed

and Carman conducted experiments combin-

ing list-wise with point-wise Random Forest

(Hybrid RF) showing that the their hybrid

outperformed other methods both in compu-

tational run-time and accuracy.

In a previous paper, the ES-Rank method

was proposed to tackle the LTR problem in

IR (Ibrahim and Landa-Silva, 2017). The

method uses a (1+1) Evolutionary Strat-

egy to evolve a single vector (the ranking

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 5

function) over a number of generations. A

preliminary investigation of ES-Rank showed

that the method performed well against other

fourteen methods from the literature on three

datasets and with respect to mean average

precision (MAP), normalized discounted cum-

mulative gain (NDCG) and computational

run-time. For example, the computational

run-time of IGBRT (rt-rank package) or

Coordinate Ascent (Ranklib package) on

the MSLR-WEB10K fold was over 9 hours

while ES-Rank used just around 30 minutes.

However, linear regression was even faster on

that dataset using less than 3 minutes. Most

of the other methods consumed more than

one hour of computation run-time on the

MSLR-WEB10K fold. Observing that linear

regression, a point-wise technique, was very

fast while still achieving reasonable accuracy,

motivated the research presented in this

paper. The previous paper used two fitness

evaluation metrics and three test datasets.

This paper presents improved versions

of ES-Rank, called IESR-Rank and IESVM-

Rank, that incorporate machine learning

techniques. Hence, the hybrid LTR methods

proposed here combine the list-wise approach

of ES-Rank with the point-wise approach of

linear regression and the pair-wise approach

of support vector machine for even better

accuracy and lower computational run-time.

This paper also includes a more extensive

evaluation of ES-Rank using five evaluation

metrics and ten LTR datasets.

4 The Proposed LTR Approach

The proposed LTR methodology uses a (1+1)-

Evolutionary Strategy (ES) for evolving the

ranking function, due to the proven capability

of evolutionary strategies to effectively and

efficiently converge towards a better solution

(Beyer and Schwefel, 2002). A (1+1)-ES

works on a population of size two, the current

solution (parent) and the candidate solution

(offspring) which results from mutating the

parent. Only if the offspring is at least as

good as the parent, it replaces the parent for

the next generation, otherwise the offspring

is disregarded. A solution or chromosome is

a vector of weights all together representing

the ranking function being evolved. It is

well-known that choosing an appropriate

initial solution in evolutionary techniques

is an important issue (Diaz-Gomez and

Hougen, 2007). Three ways to create the

initial parent are investigated here. One

is to set all weights to the same value of

zero, another one uses Linear Regression

(LR), the third one uses Support Vector

Machine. Experiments later in this paper

show that using Linear Regression or Support

Vector Machine for parent initialization helps

ES-Rank to converge towards better solutions.

Algorithm 1 outlines the ES-Rank method.

The input is the training set of query-

document pairs or feature vectors and the out-

put is a linear ranking function. The chromo-

some ParentCh is a vector of M genes, where

each gene is a real number representing the

importance of the corresponding feature for

ranking the document. Steps 1 to 4 initialize

the chromosome vector by setting each gene

to a value of 0. The Boolean variable Good

used to indicate whether repeating the muta-

tion process from the previous generation is

set to FALSE in Step 5. A copy of ParentCh

is made into OffspringCh in step 6. The evolu-

tion process for MaxGenerations generations

(1300 in this paper) starts in Step 7 and ends

in Step 24. Steps 8 to 16 show the strategy

to control the mutation process by choosing

the number of genes to mutate (R), the actual

genes to mutate and the mutation step. The

mutation step is determined using Equation

(1) where Gaussian(0,1) is a random Gaussian

number with 0 mean and 1 standard deviation,

and Cauchy(0,1) is a cumulative distributed

Cauchy random number with value between 0

and 1.

6 O. Ibrahim, D. Landa-Silva

Mutated Gene i = Gene i

+ Gaussian(0, 1) ∗ exp(Cauchy(0, 1)) (1)

The mutation step defined by Equation 1

was chosen based on preliminary experiments

in which several ways of combining the Gaus-

sian and Cauchy numbers were tried. The com-

binations tried involved adding, subtracting

and multiplying these numbers. Both random

and probabilistic mutation rates were tried in

the preliminary experiments. Among the var-

ious combinations tried, the one expressed by

Equation 1 provided the best performance for

ES-Rank. A mutation process that is success-

ful (produces a better offspring) in generation

(G− 1) is replicated in generation G as shown

in Step 9. Otherwise the parameters of the mu-

tation process are reset as shown in Steps 11

to 15. Steps 17 to 23 select between the Par-

entCh and the OffspringCh according to their

fitness function values. Finally, ES-Rank re-

turns the ranking function in Step 25, defined

by the transpose of the evolved vector of fea-

ture weights and the query-document pairs.

The computational complexity of this algo-

rithm is Ω(N ∗ n ∗ log(R)), where N is the

number of training query-document pairs, n is

the number of evolving iterations and R is the

number of genes in the chromosome. The link

for ES-Rank library package is: IESRank.zip.

Instead of the simple initialization pro-

cess in steps 1 to 4 of Algorithm 1, Lin-

ear Regression (LR) and Support Vector Ma-

chine (SVM-Rank) are used now. That is, the

genes in the ParentCh vector take the weight

values that result from the least square LR

or SVM-Rank models (Dang, 2016; Joachims,

2016a). Incorporating these machine learning

techniques into an evolutionary approach is a

novel idea within the LTR domain. The rea-

son for choosing LR and SVMRank is as well

as ES-Rank, they produce linear ranking mod-

els, while other techniques produce non-linear

ranking models or they have high computa-

tional run-time.

Algorithm 1: ES-Rank: Evolutionary

Strategy Ranking Approach
Input : A training set φ(q, d) of query-document

pairs of feature vectors. Weight Feature
Vector WLR = g(wlri) from applying
LR or SVM on φ(q, d) set.

Output: A linear ranking function F (q, d) that
assigns a weight to every
query-document pair indicating its
relevancy degree.

1 Initialization
2 for (Geni ∈ ParentCh) do
3 Geni = 0.0 or weight from LR or SVMRank

ranking model;
4 end
5 Good=FALSE;
6 OffspringCh = ParentCh;
7 for G = 1 to MaxGenerations do
8 if (Good==TRUE) then
9 Use the same mutation process of

generation (G− 1) on OffspringCh to
mutate OffspringCh, that is, mutate
the same R genes using the same
MutationStep;

10 else
11 Choose number of genes to mutate R at

random from 1 to M ;
12 for j = 1 to R do
13 Choose at random, Geni in

OffSpringCh for mutation;
14 Mutate Genei using MutationStep

according to Equation 1
15 end

16 end
17 if (Fitness(ParentCh,φ(q, d))

<Fitness(OffspringCh,φ(q, d))) then
18 ParentCh = OffspringCh;
19 Good=TRUE;

20 else
21 OffspringCh = ParentCh;
22 Good=FALSE ;

23 end

24 end
25 return the linear ranking function

F (q, d) = ParentChT • φ(q, d) = WT • φ(q, d),
that is ParentCh at the end of the
MaxGenerations contains the evolved vector W
of M feature weights, T indicates the transpose

The run-time efficiency of the proposed

method also allows for all training instances

to be used in each learning iteration. Most

other LTR techniques do not do that and in-

stead they use sampling methods for learning

and checking the quality of the proposed rank-

ing models. However, sampling methods such

as bootstrap Bagging or Boosting cause over-

fitting and under-fitting problems. The pro-

posed method evolves better ranking models

with smooth fitting and better performance re-

garding run-time and accuracy.

https://drive.google.com/file/d/1PomZX13PEnvvvvLgXkt5qJK7oPVb3Xa7/view

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 7

In Bagging (Bootstrap Aggregation) meth-

ods such as RF, the training dataset is divided

into a number of bags. Then, a training rank-

ing model is produced for each training sample

the average ranking model from all learning

ranking models is taken as the general rank-

ing model of the RF technique. This method

is used to reduce the variance of the learn-

ing ranking model on the training dataset and

hence reduce the over-fitting on predictive test

dataset. However, this averaging method lim-

its the increase in performance of the ranking

model. On the other hand, random sampling

takes sample data from the training dataset for

learning the ranking model in each learning it-

eration of the machine learning technique and

this may cause over-fitting by high variance

model representation or under-fitting by high

bias as mentioned in (Brownlee, 2017). This

issue also affects the performance of the rank-

ing model. In the following subsections, SVM-

Rank (LTR with support vector machines) and

LR (LTR with linear regression) are described

in more detail.

4.1 SVMRank: Support Vector Machine for

LTR

Joachims proposed a pairwise approach called

SVMRank for LTR based on a Support Vec-

tor Machine (Joachims, 2016a). The approach

compares every two query-document pairs in

order to rank them in a retrieved query-

document pair list. This approach uses the er-

ror rate between the actual ranking and the

ranking from its model as a loss function. The

objective of the SVMRank technique is to min-

imise the loss function value between the ac-

tual relevance labels and the ranking model

labels on the training dataset. This approach

produces a linear ranking model of weights.

Assume the vector of weights that are adjusted

by the SVMRank technique is −→w . The ranking

model is represented by f−→w (q), where q is the

query set of the training data. The ranking

of two documents di and dj that have query-

document pairs Φ(q, di) and Φ(q, dj) can be

represented by:

(di, dj) ε f−→w (q)⇔ −→wΦ(q, di) >
−→wΦ(q, dj) (2)

If the training set contains n queries, the

target of the SVMRank is to find the weight

vector −→w that maximises the number of ful-

filled inequalities in:

(di, dj) ε r
∗
1 : −→wΦ(q1, di) >

−→wΦ(q1, dj)

.....

.....

(di, dj) ε r
∗
n : −→wΦ(qn, di) >

−→wΦ(qn, dj) (3)

This direct generalisation in Equation (3)

for Equation (2) shows that this problem is a

complex (NP-hard) problem to solve. However,

it can be simplified based on the classification

problem using SVM. Thus, the optimisation

problem of SVMRank can be represented as

follows:

minimise : V (−→w ,
−→
ξ) =

1

2
−→w ·−→w +C

∑
ξi,j,k

(4)

subject to:

(di, dj) ε r
∗
1 : −→wΦ(q1, di) ≥ −→wΦ(q1, dj) + 1− ξi,j,1

.....

.....

(di, dj) ε r
∗
n : −→wΦ(qn, di) ≥ −→wΦ(qn, dj) + 1− ξi,j,n

∀i,∀j and ∀k : ξi,j,k ≥ 0(5)

where C is a constant that adjusts the mar-

gin size against the training error and ξi,j,k is

the slack variable. Thus, the problem is to min-

imise the upper bound of
∑
ξi,j,k. This prob-

lem is a convex problem that has no local op-

tima. For clarification, constraints in Equation

(5) can be re-arranged as:

−→w (Φ(qk, di)− Φ(qk, dj)) ≥ 1− ξi,j,k, (6)

Initially, Joachims proposed a support vec-

tor machine called svmlight library package

8 O. Ibrahim, D. Landa-Silva

(Joachims, 2016b). However, this package was

slower than other LTR techniques. Thus, he

later proposed a new library package for rank-

ing called SVMRank (Joachims, 2016a). SVM-

Rank is faster because it does not include all

query-document pairs of the training set in

each learning iteration.

4.2 Linear Regression for LTR

The Linear Regression (LR) technique was

introduced in the Ranklib library package

(Dang, 2016), but there is no paper discussing

its comparison to other LTR techniques. The

method used in Ranklib is the least square

LR technique (Miller, 2006). In this method,

the ranking model weight vector is chosen

based on minimising the total distance be-

tween the ground truth labels of the training

query-document pairs and the labels produced

by ranking the ranking model. The objective

of the ranking model produced by the LR tech-

nique is to minimise loss = 1
N

∑N
j=1 |yj −∑n

i=1(wixij)|. In this equation, N is the num-

ber of query-document pairs in the training

set, n is the number of features in each query-

document pairs, wi is the weight for feature

i in the ranking model proposed by LR and

xij is the feature value for feature i in query-

document pair j. Finally, yj is the ground

truth label for query-document pair j. From

our experiments, the LR technique in Ranklib

is the fastest approach, but it is not the most

efficient one within the Ranklib package.

5 Experimental Study and Evaluation

This section presents a comprehensive exper-

imental study comparing the performance of

the proposed LTR approach to fourteen other

methods both in terms of accuracy and com-

putational run-time. Accuracy is measured us-

ing five metrics described in subsection 5.2:

Mean Average Precision (MAP), Normalized

Discounted Cumulative Gain (NDCG), Pre-

cision (P), Reciprocal Rank (RR) and Root

Mean Square Error (RMSE). In order to as-

sess the performance of a method for LTR,

benchmark datasets containing training, val-

idation and test sets are identified. The LTR

approach is first applied to the training set in

order to learn a ranking function. Then, the

performance of the learned ranking function

is assessed using the test set to measure the

predictive performance of the LTR algorithm.

5.1 Benchmark Datasets

The benchmark datasets used in the exper-

iments of this paper are MSLR-WEB10K,

LETOR 4 (MQ2007 and MQ2008) and

LETOR 3 (Ohsumed, TD2003, TD2004,

HP2003, HP2004, NP2003 and NP2004) (Qin

and Liu, 2013; Liu, 2011; Qin et al., 2010). Ta-

ble 2 outlines the properties of these datasets.

The number of query-document pairs and

the number of features in the Microsoft

Bing Search dataset (MSLR-WEB10K) are

much larger than in the LETOR 4 (MQ2007

and MQ2008) or the LETOR 3 (Ohsumed

and .Gov) datasets. Each query-document

pair contains low-level features such as term

frequency and inverse document frequency of

the document terms existing in the queries.

The low-level features were determined for

all document parts (title, anchor, body and

whole). There are also high-level features

that indicate the similarity matching between

the queries and the documents. Furthermore,

hybrid features represent the recent research

IR models in SIGIR conference papers such

as Language Model with Absolute Discounted

Smoothing (LMIR.ABS), Language Model

with Jelinek-Mercer smoothing (LMIR.JM),

Language Model with Bayesian smoothing

using Dirichlet priors (LMIR.DIR) and User

Click features (Liu, 2011; Qin et al., 2010; Qin

and Liu, 2013).

The largest number of queries (10000) is

in the MSLR-WEB10K dataset. All the other

datasets have less than 1000 queries with

the exception of the MQ2007 dataset which

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 9

has 1692. Each query has associated a num-

ber of relevant and irrelevant documents, i.e.

query-document pairs for each query. The rel-

evance label indicates the relevance degrees

for the queries with the documents (query-

document relationship). In most cases, the rel-

evance labels include values of 0 (for irrel-

evant), 1 (for partially relevant) and 2 (to-

tally relevant). The exception is for the MSLR-

WEB10K dataset with values (created by the

Bing search engine) from 0 (irrelevant) to

4 (perfectly relevant). The LETOR 3 and

LETOR 4 datasets were constructed by sev-

eral research groups working in collaboration

(Qin and Liu, 2013; Liu, 2011). To the best of

our knowledge, besides the preliminary work

reported in (Ibrahim and Landa-Silva, 2017),

this paper is the first one to conduct a com-

prehensive comparison between many LTR ap-

proaches considering several accuracy metrics

and computational run-time on several very

different benchmark datasets.

5.2 Fitness and Evaluation Metrics

The following five accuracy metrics are used in

this study: MAP, NDCG@10, P@10, RR@10

and RMSE (Baeza-Yates and Ribeiro-Neto,

2011; Li, 2014). Each of them is used as sep-

arate fitness function on the training sets and

also as the evaluation metric for the ranking

functions on the test sets. Each of these met-
rics is described in detail next.

Let d1, d2, ..., dD denote the sorted docu-

ments by decreasing order of their similarity

measure function value, where D represents

the number of retrieved documents. The func-

tion r(di) gives the relevance value of a doc-

ument di. It returns 1 if di is relevant, and 0

otherwise. The Precision per query q for top-D

document retrieved (Pq@D) is defined as fol-

lows:

Pq@D =

D∑
i=1

r(di) ·
D∑
j=1

1

j
(7)

The Average Precision per query set Q

(AvgP) is the average precision values over all

queries Q. This can be given by the following

equation:

AvgP =

∑Q
q=1 Pq@D

Q
(8)

The AvgP value is calculated for a top-D

query-document pairs retrieved. The mean of

the average precision values for over all query-

document pairs retrieved (MAP) can be given

by the following equation:

MAP =

∑M
k=1 AvgP

M
(9)

Where M is number of AvgP points ex-

isting in the search result. For considering the

graded relevance levels in the datasets for LTR

techniques evaluation r(dj) returns graded rel-

evance value (not binary relevance value as in

MAP and Pq@D equations) in Equations 10,

11 and 12 for other fitness evaluation metrics.

The Normalized Discounted Cumulative Gain

of top-k documents retrieved (NDCG@k) in

Equation 10 can be calculated by:

NDCG@k =
1

IDCG@k
·
k∑
i=1

2r(di) − 1

log2(i+ 1)
(10)

where IDCG@k is the ideal (maximum)

discounted cumulative gain of top-k docu-

ments retrieved. The Discounted Cumulative
Gain of top-k documents retrieved (DCG@k)

can be calculated by the following equation:

DCG@k =

k∑
i=1

2r(di) − 1

log2(i+ 1)
(11)

If all top-k documents retrieved are rele-

vant, the DCG@k will be equal to IDCG@k.

The Reciprocal Rank at top-K retrieved

query-document pairs (RR@K) is as follows:

RR@K =

k∑
i=1

r(di)

i
(12)

10 O. Ibrahim, D. Landa-Silva

Table 2: Properties of the benchmark datasets used in the experimental study.

Dataset Queries Query-Document Pairs Features Relevance Labels No. of Folds

MQ2007 1692 69623 46 {0, 1, 2} 5

MQ2008 784 15211 46 {0, 1, 2} 5

Ohsumed 106 16140 45 {0, 1, 2} 5

HP2003 150 147606 64 {0, 1, 2} 5

TD2003 50 49058 64 {0, 1, 2} 5

NP2003 150 148657 64 {0, 1, 2} 5

HP2004 75 74409 64 {0, 1, 2} 5

TD2004 75 74146 64 {0, 1, 2} 5

NP2004 75 73834 64 {0, 1, 2} 5

MSLR-WEB10K 10000 1200192 136 {0, 1, 2, 3, 4} 5

The Error Rate (Err) is usually used to

measure the error of the learning model if it

is used on another benchmark different from

the training set. It is the subtraction between

the training evaluation value to the predictive

evaluation value, while the Mean Absolute Er-

ror and Root Mean Square Error are calcu-

lated by Equations 13 and 14.

MAE =
1

n

n∑
i=1

|Erri| (13)

RMSE =

√√√√ 1

n

n∑
i=1

(Erri)2 (14)

where n is the number of benchmark in-

stances (documents) used for evaluating the

IR system effectiveness.

Each of the above accuracy metrics seeks

to measure the quality of the proposed ranked

model and the retrieved search results by this

model. P@K is used to measure the number

of relevant documents in the top-k documents

retrieved. However, this metric does not con-

sider the graded relevance levels of each re-

trieved document, only if the query-document

retrieved is relevant or not. MAP measures

the average precision on the whole search re-

sults rather than the top-k query-document

pairs retrieved. The NDCG@K metric con-

siders the graded relevance level of each pair

query-document for the top-k query-document

retrieved. The difference between MAP and

RR@K is that RR@K considers the impact of

the position for each retrieved query-document

pair in the search list more than MAP metric.

Finally, MAE and RMSE calculate the differ-

ence between the relevance labels produced by

the ranking model with the query-document

pair features against the ground truth rele-

vance labels. MAE and RMSE consider the

ranking problem as a ranking and classification

problem. In this paper, all these metrics are

used in the performance comparison to aim for

an extensive evaluation of the proposed LTR

technique.

5.3 Results and Discussion

The variants of the proposed LTR method

are called ES-Rank (baseline initilization),

IESR-Rank (linear regression initialization)

and IESVM-Rank (support vector machine

initialization). Tables 4, 5, 6, 7 and 8 show

the overall results for all the methods tested.

The other fourteen methods are implemented

in the packages RankLib (Dang, 2016), Sofia-

ml (Sculley, 2010), SVMRank (Joachims,

2016a), Layered Genetic Programming for

LTR (RankGP) (Lin et al., 2007; Mick, 2016)

and rt-rank for IGBRT (Mohan et al., 2011).

There are no results for the GBRT technique

in respect of MAP, P@10 and RR@10 due to

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 11

the limitations of the rt-rank package for ob-

taining them. The parameter values used for

those other approaches are the default settings

in these packages. Those settings produced

the shortest computational run time and the

lowest memory size requirements for each

approach. The experimental results presented

are the average scores of five runs on 5-folds

cross validation. Each dataset fold consists of

a training, a validation and a testing data.

Experiments were conducted on a PC with

3.60 GHz Intel (R) core(TM) i7-3820 CPU

and 8GB RAM. The implementation was in

Java NetBeans under Windows 7 Enterprise

Edition.

The results shown in tables 4, 5, 6, 7 and 8

correspond to the predictive values of the av-

erage performance of five runs by the tested

approaches. As mentioned above, the perfor-

mance is measured with the evaluation metrics

MAP, NDCG@10, P@10, RR@10 and RMSE.

From these results, it can be seen that IESR-

Rank is generally the best approach producing

the best performance among all methods in 7

out of 10 average MAP, 6 out of 10 average

NDCG@10, 2 out of 10 average P@10, 2 out

of 10 RR@10 and 4 out of 10 RMSE. The sec-

ond best approach is ES-Rank, producing the

best performance in 2 out of 10 average MAP,

2 out of 10 average NDCG@10, 1 out of 10 av-

erage P@10, 2 out of 10 average RR@10 and 2

out of 10 RMSE. Random Forest comes in the

third position with 3 out of 10 average P@10

and 3 out of 10 average RR@10, while IESVM-

Rank is fourth with 4 out of 10 RMSE. The

LambdaMART is fifth with 2 out of 10 aver-

age P@10 and 1 out of 10 average RR@10. The

IGBRT and RankBoost are joint in the sixth

position with 2 out of 10 average NDCG@10

for IGBRT, while RankBoost has 1 out of 10

average MAP and 1 out of 10 average P@10.

Figures 2, 3, 4, 5 and 6 illustrate the radar

chart for each fitness evaluation metric results

reported in the tables mentioned above. In

the first four figures, higher values correspond

to better performance, while in the last figure

lower values correspond to better perfor-

mance. From these figures it can be observed

that the IESR-Rank technique exhibits the

overall best performance among all techniques.

The statistical F-significant test of the re-

sults is presented in table 3. This table shows

the null hypothesis P-values of the predictive

results of the evaluation fitness metrics on the

dataset folds. This F-test measures if there is

differentiation between the average results be-

tween techniques or not, while its null hypoth-

esis assumes that there is no difference be-

tween the results obtained by the techniques.

If the p-values are small, this indicates that

the hypothesis is rejected. The p-value un-

der 0.05 indicates that the improvements for

IESR-Rank and ES-Rank against the other

LTR techniques are significant for distinguish-

ing between them and the other techniques.

From table 3, the improvements in the re-

sults on MSLR-WEB10K, MQ2008, MQ2007,

NP2003, HP2004 and TD2004 are significant,

while the tests on Ohsumed, HP2003, TD2003

and NP2004 are not.

The average computational run-times of

the algorithms for each benchmark dataset are

shown in table 9. These results show that the

variants of the proposed LTR method are still

very efficient in terms of computational run-

time. It can be seen that by incorporating

linear regression into ES-Rank, the computa-

tional run-time of IESR-Rank increases just

slightly over ES-Rank, but as discussed above,

the accuracy results produced by IESR-Rank

are much better.

6 Conclusion and Future Work

This paper presented a new LTR approach

that combines a (1+1)-Evolutionary Strategy

with machine learning techniques. Three

methods to initialize the first parent ranking

function were tested. One method sets all

weights to zero in the initial parent. The

other two methods use Linear Regression

and Support Vector Machine to create the

12 O. Ibrahim, D. Landa-Silva

Table 3: F-test of the predictive result for the algorithms on the datasets

Dataset MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003

P-Value 0.0001926 0.03833 0.04951 0.2649 0.0828

Dataset TD2003 NP2003 HP2004 TD2004 NP2004

P-Value 0.1945 0.02432 0.0159 0.01025 0.0564

Table 4: Algorithms Average Performance Applied on 10 Datasets Using MAP Fitness Evaluation

Metric

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 TD2003 NP2003 HP2004 TD2004 NP2004

RankBoost 0.5737 0.47722 0.45348 0.44784 0.69838 0.2053 0.64712 0.62586 0.2178 0.55286

SVMRank 0.45736 0.39984 0.40784 0.38316 0.41926 0.0814 0.43316 0.3513 0.1241 0.37814

ListNET 0.47346 0.45256 0.43964 0.4401 0.12414 0.0573 0.20114 0.17426 0.1357 0.15684

AdaRank 0.57118 0.4653 0.45384 0.43656 0.72042 0.2452 0.61816 0.71532 0.1914 0.57006

MART 0.57952 0.47324 0.45894 0.4269 0.74602 0.1877 0.66526 0.4995 0.2041 0.51884

Coordinate Ascent 0.58628 0.48108 0.45976 0.44604 0.7477 0.2371 0.66282 0.6575 0.2245 0.65302

LambdaMART 0.58574 0.4704 0.45522 0.4258 0.7373 0.1805 0.6545 0.50046 0.1874 0.49574

RankNET 0.48584 0.45198 0.44808 0.4351 0.73694 0.2242 0.64972 0.61946 0.1863 0.64738

Random Forest 0.59818 0.4699 0.45866 0.43252 0.76856 0.2847 0.70794 0.62994 0.2541 0.60302

Linear Regression 0.502 0.455 0.42974 0.4333 0.49246 0.217 0.55652 0.5063 0.1886 0.46708

RankGP 0.46732 0.42672 0.41424 0.39914 0.56378 0.2149 0.58136 0.52558 0.2104 0.5142

CoRR 0.47614 0.43946 0.42164 0.39604 0.48888 0.2244 0.56786 0.54346 0.2103 0.4865

LambdaRank 0.47574 0.34836 0.3398 0.30728 0.71664 0.1309 0.64516 0.36672 0.1721 0.64424

ES-Rank 0.570386 0.48324 0.47004 0.42162 0.79902 0.2784 0.74894 0.71794 0.2615 0.75228

IESR-Rank 0.60272 0.49366 0.47312 0.4348 0.8002 0.2914 0.75444 0.69264 0.2584 0.75792

IESVM-Rank 0.45742 0.47336 0.4555 0.4432 0.63686 0.2535 0.66258 0.57474 0.1932 0.51956

Table 5: Algorithms Average Performance Applied on 10 Datasets Using NDCG@10 Fitness

Evaluation Metric

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 TD2003 NP2003 HP2004 TD2004 NP2004

RankBoost 0.3353 0.50032 0.4328 0.43852 0.74472 0.27468 0.68082 0.6772 0.30872 0.63046

SVMRank 0.22156 0.43222 0.36458 0.33296 0.44236 0.10658 0.47888 0.3468 0.19726 0.43358

ListNET 0.19274 0.484 0.4169 0.39254 0.16592 0.1213 0.17876 0.18366 0.11386 0.27818

AdaRank 0.34624 0.49662 0.42998 0.4478 0.74636 0.26516 0.65446 0.7132 0.27936 0.62576

MART 0.3947 0.50362 0.4398 0.42822 0.78748 0.27564 0.70846 0.54834 0.24478 0.5874

Coordinate Ascent 0.40156 0.50668 0.44262 0.4522 0.77722 0.31892 0.74042 0.77236 0.31526 0.70222

LambdaMART 0.39996 0.5053 0.44776 0.41652 0.7775 0.2841 0.6955 0.62498 0.25028 0.50522

RankNET 0.19148 0.4839 0.42428 0.44138 0.76688 0.22008 0.6858 0.6632 0.25882 0.7223

Random Forest 0.39964 0.49676 0.43938 0.4377 0.79764 0.362 0.7548 0.6645 0.34918 0.63992

Linear Regression 0.36118 0.48712 0.41972 0.43024 0.55242 0.32034 0.61064 0.55558 0.27498 0.54092

RankGP 0.35368 0.44062 0.41546 0.41372 0.59298 0.2543 0.5859 0.66958 0.2726 0.71198

CoRR 0.35758 0.47406 0.42248 0.4243 0.56956 0.25054 0.55668 0.6589 0.2786 0.59868

LambdaRank 0.19592 0.3125 0.27558 0.28014 0.72216 0.15086 0.68602 0.2947 0.13016 0.53932

IGBRT 0.39424 0.51814 0.45722 0.4437 0.80816 0.3062 0.756326 NA NA NA

ES-Rank 0.38234 0.50656 0.45062 0.4461 0.82616 0.36244 0.753792 0.77784 0.35792 0.79224

IESR-Rank 0.41504 0.5169 0.45506 0.4544 0.82866 0.3761 0.75752 0.77806 0.3557 0.7899

IESVM-Rank 0.22404 0.49762 0.43558 0.44854 0.7885 0.3402 0.73256 0.57188 0.21326 0.52362

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 13

Fig. 2: Illustrating the MAP performance for all LTR methods on the LETOR datasets.

Table 6: Algorithms Average Performance Applied on 10 Datasets Using P@10 Fitness Evaluation

Metric

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 TD2003 NP2003 HP2004 TD2004 NP2004

RankBoost 0.58678 0.27376 0.37164 0.50412 0.10202 0.144 0.088 0.08334 0.23334 0.08534

SVMRank 0.40454 0.2501 0.33194 0.40128 0.06454 0.072 0.06758 0.05334 0.14816 0.05334

ListNET 0.43586 0.267 0.3582 0.46556 0.03334 0.068 0.03298 0.0242 0.112 0.02666

AdaRank 0.59416 0.24738 0.35558 0.49852 0.1 0.128 0.08532 0.08268 0.224 0.08934

MART 0.63118 0.27502 0.37872 0.47554 0.104 0.146 0.084 0.08198 0.23734 0.08136

Coordinate Ascent 0.62682 0.27328 0.37768 0.4831 0.10334 0.158 0.09162 0.09732 0.24932 0.092

LambdaMART 0.64484 0.27504 0.38378 0.47804 0.09598 0.156 0.08696 0.07866 0.22932 0.07468

RankNET 0.44282 0.26686 0.36182 0.49566 0.09734 0.148 0.08732 0.08464 0.21468 0.096

Random Forest 0.60724 0.27466 0.37824 0.49174 0.10536 0.194 0.09362 0.08666 0.26668 0.08798

Linear Regression 0.45732 0.2735 0.3724 0.48078 0.08666 0.18 0.08296 0.08002 0.22532 0.08134

RankGP 0.44742 0.24002 0.34394 0.4155 0.06734 0.10532 0.082 0.07332 0.1426 0.07334

CoRR 0.44112 0.24276 0.35456 0.41784 0.07734 0.08 0.068 0.05866 0.11114 0.05602

LambdaRank 0.43016 0.21268 0.29236 0.32832 0.05602 0.022 0.03248 0.02132 0.13202 0.04346

ES-Rank 0.63446 0.27018 0.37684 0.49358 0.09746 0.184 0.09564 0.09598 0.25732 0.09066

IESR-Rank 0.64338 0.2753 0.37208 0.4976 0.10406 0.19 0.08902 0.09874 0.25884 0.09066

IESVM-Rank 0.40536 0.27182 0.37576 0.4814 0.10266 0.166 0.09156 0.08266 0.168 0.06868

14 O. Ibrahim, D. Landa-Silva

Fig. 3: Illustrating the NDCG@10 performance for all LTR methods on the LETOR datasets.

Fig. 4: Illustrating the P@10 performance for all LTR methods on the LETOR datasets.

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 15

Fig. 5: Illustrating the RR@10 performance for all LTR methods on the LETOR datasets.

Fig. 6: Illustrating the RMSE performance for all LTR methods on the LETOR datasets.

16 O. Ibrahim, D. Landa-Silva

Table 7: Algorithms Average Performance Applied on 10 Datasets Using RR@10 Fitness Evalu-

ation Metric

Algorithm MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 TD2003 NP2003 HP2004 TD2004 NP2004

RankBoost 0.77662 0.5331 0.5638 0.72272 0.72594 0.46966 0.64464 0.63994 0.49766 0.55688

SVMRank 0.50512 0.45052 0.48534 0.62528 0.40398 0.16098 0.42384 0.34858 0.35466 0.24216

ListNET 0.58142 0.51342 0.55174 0.66964 0.1545 0.16908 0.10356 0.09628 0.1631 0.2565

AdaRank 0.8025 0.53318 0.54832 0.73908 0.75232 0.41014 0.57586 0.6979 0.50998 0.5683

MART 0.80944 0.5295 0.5691 0.70606 0.79212 0.4297 0.66808 0.56728 0.42806 0.52258

Coordinate Ascent 0.77194 0.53348 0.55776 0.69728 0.7889 0.43212 0.67758 0.70362 0.52898 0.60846

LambdaMART 0.81202 0.52962 0.57028 0.73662 0.77454 0.39706 0.67244 0.56102 0.42394 0.48148

RankNET 0.62222 0.50464 0.55222 0.71924 0.76682 0.42584 0.63974 0.65254 0.4467 0.6554

Random Forest 0.81182 0.53046 0.5661 0.72284 0.7961 0.53858 0.7134 0.62522 0.65104 0.58924

Linear Regression 0.59422 0.51336 0.55044 0.74138 0.51912 0.47096 0.55356 0.50648 0.50404 0.46376

RankGP 0.57304 0.4832 0.5418 0.55918 0.58422 0.30924 0.46534 0.47744 0.47764 0.45378

CoRR 0.58562 0.45536 0.54334 0.54078 0.58076 0.29544 0.46624 0.4637 0.46058 0.4519

LambdaRank 0.58 0.42796 0.5001 0.602 0.75228 0.31154 0.61492 0.36758 0.36956 0.57872

ES-Rank 0.764114 0.53714 0.54626 0.72654 0.80106 0.5239 0.67388 0.72378 0.57316 0.6288

IESR-Rank 0.81912 0.5352 0.56856 0.72458 0.79182 0.50572 0.69022 0.72912 0.5701 0.6293

IESVM-Rank 0.5127 0.51288 0.55996 0.72912 0.7679 0.47424 0.6383 0.43534 0.45852 0.42166

Table 8: Algorithms Performance Applied on 10 Datasets Using RMSE Fitness Evaluation Metric

Algorithms MSLR-WEB10K MQ2008 MQ2007 Ohsumed HP2003 NP2003 TD2003 HP2004 NP2004 TD2004

RankBoost 0.2319 0.0973 0.1018 0.1905 0.0511 0.0409 0.0397 0.0409 0.0362 0.0496

SVMRank 0.1820 0.0795 0.0820 0.1536 0.0324 0.0282 0.0268 0.0434 0.1597 0.0667

ListNET 0.2735 0.0934 0.0985 0.1912 0.0183 0.0113 0.0128 0.0048 0.0124 0.0245

AdaRank 0.2127 0.0742 0.0755 0.1985 0.0402 0.0245 0.0301 0.0227 0.0184 0.0288

MART 0.2300 0.0980 0.1045 0.1959 0.0567 0.0420 0.0367 0.0297 0.0340 0.0459

Coordinate Ascent 0.2275 0.0975 0.1017 0.1987 0.0521 0.0423 0.0408 0.0457 0.0429 0.0554

LambdaMART 0.2400 0.0984 0.1044 0.1916 0.0512 0.0432 0.0344 0.0373 0.0300 0.0458

RankNET 0.2647 0.0931 0.0984 0.1884 0.0491 0.0404 0.0272 0.0418 0.0436 0.0451

Random Forest 0.2948 0.0964 0.1046 0.1937 0.0533 0.0446 0.0477 0.0409 0.0388 0.0633

Linear Regression 0.1653 0.0952 0.0994 0.1795 0.0340 0.0352 0.0428 0.0325 0.0297 0.0491

LambdaRank 0.2910 0.0718 0.0620 0.1237 0.0312 0.0167 0.0170 0.0119 0.0122 0.0188

IGBRT 0.3968 0.1833 0.1931 0.1622 0.0158 0.0138 0.0205 NA NA NA

ES-Rank 0.0953 0.0295 0.0282 0.0561 0.0012 0.0017 0.0028 0.0009 0.0000 0.0014

IESR-Rank 0.0681 0.0284 0.0292 0.0504 0.0003 0.0002 0.0019 0.0003 0.0026 0.0022

IESVM-Rank 0.1655 0.0260 0.0266 0.0580 0.0005 0.0001 0.0006 0.0010 0.0032 0.0050

initial parent. Then, the parent is evolved
for a number of generations by the evolu-

tionary strategy. The performance of the

proposed approach was compared to fourteen

other machine learning and computational

intelligence approaches from the literature.

The metrics Mean Average Precision (MAP),

Normalized Discounted Cumulative Gain

(NDCG@10), Precision (P@10), Reciprocal

Ranking (RR@10) and Root Mean Square

Error (RMSE) were used as fitness functions

within the proposed method and also for

evaluating the performance of the LTR ap-

proaches in the comparison. The benchmark

datasets used here are: MSLR-WEB10K

(Microsoft Bing ten thousand web queries)

dataset, LETOR 4 (MQ2008, MQ2007 TREC

Million queries datasets for years 2008 and

2007) and LETOR 3 (Ohsumed and 6 .Gov

datasets).

From the experimental results, the overall

conclusion is that the variant of the proposed

method that uses Linear Regression exhibited

better performance than the other meth-

ods tested. This variant called IESR-Rank

achieved the best performance in 7 out of 10

average MAP, 6 out of 10 average NDCG@10,

2 out of 10 average P@10, 2 out of 10 average

RR@10 and 4 out of 10 RMSE. The second

best overall performance was exhibited by

the variant ES-Rank which simply sets all

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 17

Table 9: Average run-times of the five evaluation fitness metrics measured in seconds for the

algorithms

Algorithm MSLR-
WEB10K

MQ2008 MQ2007 Ohsumed HP2003 NP2003 TD2003 HP2004 NP2004 TD2004

RankBoost 3720 15 74 28 483 1153 460 493 597 604

SVMRank 32409 19 23 15 33 40 36 33 35 32

ListNET 18005 45 95 43 145 255 250 145 140 142

AdaRank 3600 11 20 16 228 453 486 227 123 240

MART 1200 8 11 12 12 23 11 13 15 19

CA 25200 37 240 28 580 940 396 460 480 460

LambdaMART 3720 9 11 8 24 89 21 23 25 27

RankNET 10800 33 96 98 55 119 130 110 117 298

RF 3660 27 55 17 72 168 71 72 70 80

LR 157 2 3 3 5 6 5 5 4 5

RankGP 26020 375 390 360 430 519 486 423 406 496

CoRR 10803 42 51 39 59 61 58 57 58 57

LambdaRank 18015 46 142 165 145 237 462 150 150 438

IGBRT 36750 274 253 197 393 389 386 NA NA NA

ES-Rank 1800 35 51 15 128 137 47 69 68 70

IESR-Rank 1957 37 54 18 133 143 52 74 72 75

IESVM-Rank 34209 54 74 30 161 177 83 102 103 102

initial weights to zero in the initial parent.

Random Forest comes in the third posi-

tion, IESVM-Rank showed the fourth best

performance followed by LambdaMART.

IGBRT and RankBoost are joint in the sixth

position followed by RankBoost. Thus, the

proposed method combining evolutionary

computation with machine learning is a

competitive approach to tackle the LTR

problem in information retrieval. It is clear

from the results in this paper that a hybrid

LTR technique that combines optimisation

(an evolutionary strategy) with machine

learning (linear regression and support vector
machines) strikes a good balance between

effectiveness and computational efficiency.

Despite the proposed IESR-Rank, ES-Rank

and IESVM-Rank performing better overall

against the default settings of the other

fourteen techniques, it is unclear whether such

performance will hold after sophisticated tun-

ing of the other techniques. Future research

should seek to develop enhanced versions of

the proposed approach by investigating other

optimisation methods besides evolutionary

strategies. For example, other heuristic opti-

misation paradigms like simulated annealing,

late acceptance hill-climbing, great deluge

and others could be used in combination

with linear regression. It is argued that the

combination of optimisation and machine

learning is a fertile ground for the develop-

ment of high-performance LTR methods for

information retrieval.

Compliance with ethical standards

Conflict of interest The authors declare that

they have no conflict of interest.

References

Ricardo A. Baeza-Yates and Berthier A.

Ribeiro-Neto. Modern Information Re-

trieval - the concepts and technology behind

search. Pearson Education Ltd., Harlow,

England, 2nd edition edition, 2011.

Hans-George Beyer and Hans-Paul Schwefel.

Evolution strategies - A comprehensive in-

troduction. Natural Computing, 1:3–52,

2002.

Leo Breiman. Random forests. Machine

Learning, 45(1):5–32, 2001. ISSN 1573-0565.

18 O. Ibrahim, D. Landa-Silva

doi: 10.1023/A:1010933404324. URL http:

//dx.doi.org/10.1023/A:1010933404324.

Jason Brownlee. Overfitting and un-

derfitting with machine learning

algorithms, 2017. URL https:

//machinelearningmastery.com/

overfitting-and-underfitting-with-

machine-learning-algorithms/.

Chris Burges, Tal Shaked, Erin Renshaw, Ari

Lazier, Matt Deeds, Nicole Hamilton, and

Greg Hullender. Learning to rank using gra-

dient descent. In Proceedings of the 22Nd In-

ternational Conference on Machine Learn-

ing, ICML ’05, pages 89–96, New York, NY,

USA, 2005. ACM. ISBN 1-59593-180-5.

doi: 10.1145/1102351.1102363. URL http:

//doi.acm.org/10.1145/1102351.1102363.

Christopher J. C. Burges. From

RankNet to LambdaRank to Lamb-

daMART: An overview. Technical re-

port, Microsoft Research, 2010. URL

http://research.microsoft.com/en-us/

um/people/cburges/tech reports/MSR-

TR-2010-82.pdf.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng

Tsai, and Hang Li. Learning to rank: from

pairwise approach to listwise approach. In

Proceedings of the 24th international con-

ference on Machine learning, ICML ’07,

pages 129–136, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-793-3. doi:

10.1145/1273496.1273513. URL http://

doi.acm.org/10.1145/1273496.1273513.

Olivier Chapelle and Yi Chang. Yahoo! learn-

ing to rank challenge overview. In Pro-

ceedings of the Yahoo! Learning to Rank

Challenge, held at ICML 2010, Haifa, Is-

rael, June 25, 2010, pages 1–24, 2011.

URL http://www.jmlr.org/proceedings/

papers/v14/chapelle11a.html.

Van Dang. RankLib,

http://www.cs.umass.edu/ṽdang/ranklib.html,

2016. URL http://www.cs.umass.edu/

~{}vdang/ranklib.html.

Pedro A Diaz-Gomez and Dean F Hougen.

Initial population for genetic algorithms: A

metric approach. In Proceedings of the 2007

International Conference on Genetic and

Evolutionary Methods GEM, pages 43–49,

2007.

Yoav Freund, Raj Iyer, Robert E. Schapire,

and Yoram Singer. An efficient boosting al-

gorithm for combining preferences. Journal

of Machine Learning Research, 4:933–969,

December 2003. ISSN 1532-4435. URL

http://dl.acm.org/citation.cfm?id=

945365.964285.

Jerome H. Friedman. Greedy function ap-

proximation: A gradient boosting machine.

The Annals of Statistics, 29(5):1189–1232,

2001. ISSN 00905364. URL http://

www.jstor.org/stable/2699986.

O. Ali Sadek Ibrahim and D. Landa-Silva.

Term frequency with average term occur-

rences for textual information retrieval. Soft

Computing, 20(8):3045–3061, 2016. ISSN

1433-7479. doi: 10.1007/s00500-015-1935-7.

URL http://dx.doi.org/10.1007/s00500-

015-1935-7.

Osman Ali Sadek Ibrahim and Dario Landa-

Silva. Es-rank: Evolution strategy learn-

ing to rank approach. In Proceedings of

the Symposium on Applied Computing, SAC

’17, pages 944–950, New York, NY, USA,

2017. ACM. ISBN 978-1-4503-4486-9. doi:

10.1145/3019612.3019696. URL http://

doi.acm.org/10.1145/3019612.3019696.

Mohammad Ashiful Islam. Rankgpes: Learn-

ing to rank for information retrieval using a

hybrid genetic programming with evolution-

ary strategies, 2013.

Thorsten Joachims. Support vector

machine for ranking, 2016a. URL

https://www.cs.cornell.edu/people/tj/

svm light/svm rank.html#References.

Thorsten Joachims. Svmlight: Sup-

port vector machine for classifica-

tion and ranking, 2016b. URL

http://svmlight.joachims.org/.

Hang Li. Learning to Rank for Information

Retrieval and Natural Language Processing,

Second Edition. Morgan & Claypool Pub-

lishers, 2014. ISBN 9781627055857.

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
http://doi.acm.org/10.1145/1102351.1102363
http://doi.acm.org/10.1145/1102351.1102363
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://doi.acm.org/10.1145/1273496.1273513
http://doi.acm.org/10.1145/1273496.1273513
http://www.jmlr.org/proceedings/papers/v14/chapelle11a.html
http://www.jmlr.org/proceedings/papers/v14/chapelle11a.html
http://www.cs.umass.edu/~{}vdang/ranklib.html
http://www.cs.umass.edu/~{}vdang/ranklib.html
http://dl.acm.org/citation.cfm?id=945365.964285
http://dl.acm.org/citation.cfm?id=945365.964285
http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986
http://dx.doi.org/10.1007/s00500-015-1935-7
http://dx.doi.org/10.1007/s00500-015-1935-7
http://doi.acm.org/10.1145/3019612.3019696
http://doi.acm.org/10.1145/3019612.3019696
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html#References
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html#References
http://svmlight.joachims.org/

An Evolutionary Strategy with Machine Learning for Learning to Rank in Information Retrieval 19

J. Y. Lin, J. Y. Yeh, and Chao Chung

Liu. Learning to rank for information re-

trieval using layered multi-population ge-

netic programming. In Computational Intel-

ligence and Cybernetics (CyberneticsCom),

2012 IEEE International Conference on,

pages 45–49, July 2012. doi: 10.1109/

CyberneticsCom.2012.6381614.

Jung-Yi Lin, Hao-Ren Ke, Been-Chian Chien,

and Wei-Pang Yang. Designing a classifier

by a layered multi-population genetic pro-

gramming approach. Pattern Recognition,

40(8):2211–2225, 2007.

Tie-Yan Liu. Learning to rank for information

retrieval. Foundation Trends of Information

Retrieval, 3(3):225–331, March 2009. ISSN

1554-0669. doi: 10.1561/1500000016.

Tie-Yan Liu. Learning to Rank for In-

formation Retrieval, chapter The LETOR

Datasets, pages 133–143. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011. ISBN

978-3-642-14267-3. doi: 10.1007/978-3-

642-14267-3 10. URL http://dx.doi.org/

10.1007/978-3-642-14267-3 10.

Christopher D. Manning, Prabhakar Ragha-

van, and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge Univer-

sity Press, New York, NY, USA, 2008. ISBN

0521865719, 9780521865715.

Donald Metzler and W. Bruce Croft. Lin-

ear feature-based models for information

retrieval. Information Retrieval, 10(3):

257–274, 2007. ISSN 1573-7659. doi:

10.1007/s10791-006-9019-z. URL http://

dx.doi.org/10.1007/s10791-006-9019-z.

Jung-Yi Lin Mick, 2016. URL http:

//people.cs.nctu.edu.tw/~jylin/lagep/

lagep.html.

Steven J. Miller. The method of

least squares, 2006. URL http:

//citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.710.4069.

A. Mohan, Z. Chen, and K.Q. Weinberger.

Web-search ranking with initialized gradi-

ent boosted regression trees. In Journal of

Machine Learning Research, Workshop and

Conference Proceedings, volume 14, pages

77–89, 2011.

Tao Qin and Tie-Yan Liu. Introduc-

ing LETOR 4.0 datasets. CoRR,

abs/1306.2597, 2013. URL http:

//arxiv.org/abs/1306.2597.

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li.

Letor: A benchmark collection for research

on learning to rank for information retrieval.

Information Retrieval, 13(4):346–374, 2010.

ISSN 1573-7659. doi: 10.1007/s10791-009-

9123-y. URL http://dx.doi.org/10.1007/

s10791-009-9123-y.

D. Sculley. Combined regression and ranking.

In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining, KDD ’10,

pages 979–988, New York, NY, USA, 2010.

ACM. ISBN 978-1-4503-0055-1. doi:

10.1145/1835804.1835928. URL http://

doi.acm.org/10.1145/1835804.1835928.

Alberto Tonon, Gianluca Demartini, and

Philippe Cudr-Mauroux. Pooling-based con-

tinuous evaluation of information retrieval

systems. Information Retrieval Journal, 18

(5):445–472, 2015. ISSN 1386-4564. doi:

10.1007/s10791-015-9266-y.

Julián Urbano. Test collection reliability:

a study of bias and robustness to sta-

tistical assumptions via stochastic simula-

tion. Information Retrieval Journal, 19

(3):313–350, 2016. ISSN 1573-7659. doi:

10.1007/s10791-015-9274-y. URL http://

dx.doi.org/10.1007/s10791-015-9274-y.

Jun Xu and Hang Li. Adarank: A boosting

algorithm for information retrieval. In Pro-

ceedings of the 30th Annual International

ACM SIGIR Conference on Research and

Development in Information Retrieval, SI-

GIR ’07, pages 391–398, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-597-7.

doi: 10.1145/1277741.1277809. URL http:

//doi.acm.org/10.1145/1277741.1277809.

Xin Yan and Xiao Gang Su. Linear Re-

gression Analysis: Theory and Computing.

World Scientific Publishing Co., Inc., River

Edge, NJ, USA, 2009. ISBN 9789812834102,

9812834109.

http://dx.doi.org/10.1007/978-3-642-14267-3_10
http://dx.doi.org/10.1007/978-3-642-14267-3_10
http://dx.doi.org/10.1007/s10791-006-9019-z
http://dx.doi.org/10.1007/s10791-006-9019-z
http://people.cs.nctu.edu.tw/~jylin/lagep/lagep.html
http://people.cs.nctu.edu.tw/~jylin/lagep/lagep.html
http://people.cs.nctu.edu.tw/~jylin/lagep/lagep.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.710.4069
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.710.4069
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.710.4069
http://arxiv.org/abs/1306.2597
http://arxiv.org/abs/1306.2597
http://dx.doi.org/10.1007/s10791-009-9123-y
http://dx.doi.org/10.1007/s10791-009-9123-y
http://doi.acm.org/10.1145/1835804.1835928
http://doi.acm.org/10.1145/1835804.1835928
http://dx.doi.org/10.1007/s10791-015-9274-y
http://dx.doi.org/10.1007/s10791-015-9274-y
http://doi.acm.org/10.1145/1277741.1277809
http://doi.acm.org/10.1145/1277741.1277809

	Introduction
	Background
	Related Work
	The Proposed LTR Approach
	Experimental Study and Evaluation
	Conclusion and Future Work

