75 research outputs found

    Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal information in the absence of the CS

    Get PDF
    Involvement of the dorsal hippocampus (DHPC) in conditioned-response timing and maintaining temporal information across time gaps was examined in an appetitive Pavlovian conditioning task, in which rats with sham and DHPC lesions were first conditioned to a 15-s visual cue. After acquisition, the subjects received a series of non-reinforced test trials, on which the visual cue was extended (45 s) and gaps of different duration, 0.5, 2.5, and 7.5 s, interrupted the early portion of the cue. Dorsal hippocampal-lesioned subjects underestimated the target duration of 15 s and showed broader response distributions than the control subjects on the no-gap trials in the first few blocks of test, but the accuracy and precision of their timing reached the level of that of the control subjects by the last block. On the gap trials, the DHPC-lesioned subjects showed greater rightward shifts in response distributions than the control subjects. We discussed these lesion effects in terms of temporal versus non-temporal processing (response inhibition, generalisation decrement, and inhibitory conditioning)

    An Ecological Approach to Prospective and Retrospective Timing of Long Durations: A Study Involving Gamers

    Get PDF
    To date, most studies comparing prospective and retrospective timing have failed to use long durations and tasks with a certain degree of ecological validity. The present study assessed the effect of the timing paradigm on playing video games in a “naturalistic environment” (gaming centers). In addition, as it involved gamers, it provided an opportunity to examine the effect of gaming profile on time estimation. A total of 116 participants were asked to estimate prospectively or retrospectively a video game session lasting 12, 35 or 58 minutes. The results indicate that time is perceived as longer in the prospective paradigm than in the retrospective one, although the variability of estimates is the same. Moreover, the 12-minute session was perceived as longer, proportionally, than the 35- and 58-minute sessions. The study also revealed that the number of hours participants spent playing video games per week was a significant predictor of time estimates. To account for the main findings, the differences between prospective and retrospective timing are discussed in quantitative terms using a proposed theoretical framework, which states that both paradigms use the same cognitive processes, but in different proportions. Finally, the hypothesis that gamers play more because they underestimate time is also discussed

    Time Changes with the Embodiment of Another’s Body Posture

    Get PDF
    The aim of the present study was to investigate whether the perception of presentation durations of pictures of different body postures was distorted as function of the embodied movement that originally produced these postures. Participants were presented with two pictures, one with a low-arousal body posture judged to require no movement and the other with a high-arousal body posture judged to require considerable movement. In a temporal bisection task with two ranges of standard durations (0.4/1.6 s and 2/8 s), the participants had to judge whether the presentation duration of each of the pictures was more similar to the short or to the long standard duration. The results showed that the duration was judged longer for the posture requiring more movement than for the posture requiring less movement. However the magnitude of this overestimation was relatively greater for the range of short durations than for that of longer durations. Further analyses suggest that this lengthening effect was mediated by an arousal effect of limited duration on the speed of the internal clock system

    Genetic Determinants of Time Perception Mediated by the Serotonergic System

    Get PDF
    Background: The present study investigates neurobiological underpinnings of individual differences in time perception. Methodology: Forty-four right-handed Russian Caucasian males (18–35 years old) participated in the experiment. The polymorphism of the genes related to the activity of serotonin (5-HT) and dopamine (DA)-systems (such as 5-HTT, 5HT2a, MAOA, DAT, DRD2, COMT) was determined upon the basis of DNA analysis according to a standard procedure. Time perception in the supra-second range (mean duration 4.8 s) was studied, using the duration discrimination task and parametric fitting of psychometric functions, resulting in individual determination of the point of subjective equality (PSE). Assuming the ‘dual klepsydra model ’ of internal duration representation, the PSE values were transformed into equivalent values of the parameter k (kappa), which is a measure of the ‘loss rate ’ of the duration representation. An association between time representation parameters (PSE and k, respectively) and 5-HT-related genes was found, but not with DArelated genes. Higher ‘loss rate ’ (k) of the cumulative duration representation were found for the carriers of genotypes characterized by higher 5-HT transmission, i.e., 1) lower 5-HT reuptake, known for the 5-HTTLPR SS polymorphism compared with LL, 2) lower 5-HT degradation, described for the ‘low expression ’ variant of MAOA VNTR gene compared with ‘high expression ’ variant, and 3) higher 5-HT2a receptor density, proposed for the TT polymorphism of 5-HT2a T102C gene compared with CC

    Individual Differences in Sound-in-Noise Perception Are Related to the Strength of Short-Latency Neural Responses to Noise

    Get PDF
    Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40–66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes

    Motor activity improves temporal expectancy

    Get PDF
    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments

    Group membership and racial bias modulate the temporal estimation of in-group/out-group body movements

    Get PDF
    Social group categorization has been mainly studied in relation to ownership manipulations involving highly-salient multisensory cues. Here, we propose a novel paradigm that can implicitly activate the embodiment process in the presence of group affiliation information, whilst participants complete a task irrelevant to social categorization. Ethnically White participants watched videos of White- and Black-skinned models writing a proverb. The writing was interrupted 7, 4 or 1 s before completion. Participants were tasked with estimating the residual duration following interruption. A video showing only hand kinematic traces acted as a control condition. Residual duration estimates for out-group and control videos were significantly lower than those for in-group videos only for the longest duration. Moreover, stronger implicit racial bias was negatively correlated to estimates of residual duration for out-group videos. The underestimation bias for the out-group condition might be mediated by implicit embodiment, affective and attentional processes, and finalized to a rapid out-group categorization
    corecore