25 research outputs found

    Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems

    Get PDF
    As the direct uptake of deep groundwater by vegetation may be essential in semiarid regions, we incorporated this process in stochastic root zone water balance models. The direct water uptake by vegetation via deep tap roots is simulated using one additional empirical parameter. This is considered for the case of feedback with root zone saturation and without such feedback. The model that accounts for feedback between shallow root zone saturation and groundwater uptake by deep roots takes up less water if the shallow root zone is wet. The behavior of the models demonstrates that for certain combinations of climate and groundwater depths this feedback becomes important in determining differences in total evapotranspiration (ET). This feedback mechanism also captures hydraulic redistribution processes. The range of relative contributions of groundwater to ET predicted by the models was similar to values derived in isotope studie

    Hydrological response of a small catchment burned by experimental fire

    Get PDF
    Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in small shrub-covered paired catchments pre- and post-fire. The shrub cover was medium dense to dense (44 to 84 %) and pre-fire canopy interception was on average 48.7% of total rainfall. Fire increased streamflow volumes 1.6 times more than predicted, resulting in increased runoff coefficients and changed rainfall-streamflow relationships - although the increase in streamflow per unit rainfall was only significant at the subcatchment-scale. Fire also fastened the response of topsoil moisture to rainfall from 2.7 to 2.1 h (p = 0.058), and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events

    Evaluation of sesamum gum as an excipient in matrix tablets

    Get PDF
    In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India. Part 1: Field-scale impacts

    No full text
    Rainwater harvesting (RWH), the small-scale collection and storage of runoff to augment groundwater stores, has been seen as a solution to the deepening groundwater crisis in India. However, hydrological impacts of RWH in India are not well understood, particularly at the larger catchment-scale. A key element to grasping RWH impact involves understanding the generated recharge variability in time and space, which is the result of variability in rainfall-runoff and efficiency of RWH structures. Yet there are very few reported empirical studies of the impact of RWH. Catchment-scale impacts are best studied using a water balance model, which would require a basic level of field data and understanding of the variability. This study reports the results of a 2-year field study in the 476 km2 semi-arid Arvari River catchment, where over 366 RWH structures have been built since 1985. Difficulties associated with working in semi-arid regions include data scarcity. Potential recharge estimates from seven RWH storages, across three different types and in six landscape positions, were calculated using the water balance method. These estimates were compared with recharge estimates from monitored water levels in 29 dug wells using the water table fluctuation method. The average daily potential recharge from RWH structures varied between 12 and 52 mm/day, while estimated actual recharge reaching the groundwater ranged from 3 to 7 mm/day. The large difference between recharge estimates could be explained through soil storage, local groundwater mounding beneath structures and a large lateral transmissivity in the aquifer. Overall, approximately 7% of rainfall is recharged by RWH in the catchment, which was similar in the comparatively wet and dry years of the field analysis. There were key differences between RWH structures, due to engineering design and location. These results indicate that recharge from RWH affects the local groundwater table, but also has potential to move laterally and impact surrounding areas. However, the greatest weakness in such analysis is the lack of information available on aquifer characteristics, in addition to geology and soil type.Water storage Groundwater Recharge Water balance Water table fluctuation

    Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework

    No full text
    Groundwater uptake can play a major role in the survival of vegetation in semiarid areas, but this has not yet been included in an earlier developed ecohydrological stochastic framework. In this paper we provide a piecewise linear equation which includes capillary fluxes from shallow groundwater in the loss function of the ecohydrological stochastic model. The results indicate that this model is able to simulate the capillary fluxes, and the model also reflects the impact of the fluxes on the soil moisture balance. In addition, the results are analytically tractable and allow calculation of the probability density functions of soil water saturation and water stress for different groundwater depths below the root zon

    On stochastic modelling of groundwater uptake in semi-arid water-limited systems: root density and seasonality effects

    No full text
    In recent ecohydrological modelling, a common basis has been found in methodology and axiomas, such as the minimalist, systems analysis approach and a piecewise linear root zone water loss function. In this paper, we consider the loss function for root zones in contact with ground water through capillary upflow and including deep root systems. The basic assumption of a piecewise linear behaviour is not well supported, and we highlight how this generates a series of new research questions, related to important knowledge gaps at the interface of physics, plant physiology and ecology. We develop analytical solutions for the probability density functions for soil saturation and evapotranspiration for simple ecohydrological box models that are based on different vegetation groundwater feedbacks, for which numerical results have been presented earlier. In the case of intermediate groundwater levels and wetter climates, a feedback model that regulates groundwater uptake in response to root zone wetness regulates the transpiration most realistically. In semi-arid regions, root zone salinization may occur as a result of groundwater quality and ineffective root zone leaching. How to combine the adverse effects of drought and osmotic stress in models is subject to debate, and several alternatives are presented. Seasonality is another unexplored area, and we highlight how this affects root zone salinization. Finally, a further feedback between upper root zone density and transpiration regulation in the loss function highlights dependence of deep rooted vegetation on groundwater. Experimental data are needed as the availability at this time is limiting further development of models

    Root zone salinity and sodicity under seasonal rainfall due to feedback of decreasing hydraulic conductivity

    No full text
    Soil sodicity, where the soil cation exchange complex is occupied for a significant fraction by Na+, may lead to vulnerability to soil structure deterioration. With a root zone flow and salt transport model, we modeled the feedback effects of salt concentration (C) and exchangeable sodium percentage (ESP) on saturated hydraulic conductivity Ks(C, ESP) for different groundwater depths and climates, using the functional approach of McNeal (1968). We assume that a decrease of Ks is practically irreversible at a time scale of decades. Representing climate with a Poisson rainfall process, the feedback hardly affects salt and sodium accumulation compared with the case that feedback is ignored. However, if salinity decreases, the much more buffered ESP stays at elevated values, while Ks decreases. This situation may develop if rainfall has a seasonal pattern where drought periods with accumulation of salts in the root zone alternate with wet rainfall periods in which salts are leached. Feedback that affects both drainage/leaching and capillary upward flow from groundwater, or only drainage, leads to opposing effects. If both fluxes are affected by sodicity-induced degradation, this leads to reduced salinity (C) and sodicity (ESP), which suggests that the system dynamics and feedback oppose further degradation. Experiences in the field point in the same direction

    Root zone salinity and sodicity under seasonal rainfall due to feedback of decreasing hydraulic conductivity

    No full text
    Soil sodicity, where the soil cation exchange complex is occupied for a significant fraction by Na+, may lead to vulnerability to soil structure deterioration. With a root zone flow and salt transport model, we modeled the feedback effects of salt concentration (C) and exchangeable sodium percentage (ESP) on saturated hydraulic conductivity Ks(C, ESP) for different groundwater depths and climates, using the functional approach of McNeal (1968). We assume that a decrease of Ks is practically irreversible at a time scale of decades. Representing climate with a Poisson rainfall process, the feedback hardly affects salt and sodium accumulation compared with the case that feedback is ignored. However, if salinity decreases, the much more buffered ESP stays at elevated values, while Ks decreases. This situation may develop if rainfall has a seasonal pattern where drought periods with accumulation of salts in the root zone alternate with wet rainfall periods in which salts are leached. Feedback that affects both drainage/leaching and capillary upward flow from groundwater, or only drainage, leads to opposing effects. If both fluxes are affected by sodicity-induced degradation, this leads to reduced salinity (C) and sodicity (ESP), which suggests that the system dynamics and feedback oppose further degradation. Experiences in the field point in the same direction
    corecore