63 research outputs found
Phase Transitions in One-Dimensional Truncated Bosonic Hubbard Model and Its Spin-1 Analog
We study one-dimensional truncated (no more than 2 particles on a site)
bosonic Hubbard model in both repulsive and attractive regimes by exact
diagonalization and exact worldline Monte Carlo simulation. In the commensurate
case (one particle per site) we demonstrate that the point of Mott-insulator --
superfluid transition, , is remarkably far from that of
the full model. In the attractive region we observe the phase transition from
one-particle superfluid to two-particle one. The paring gap demonstrates a
linear behavior in the vicinity of the critical point. The critical state
features marginal response to the gauge phase. We argue that the two-particle
superfluid is a macroscopic analog of a peculiar phase observed earlier in a
spin-1 model with axial anisotropy.Comment: Revtex, 5 pages, 9 figures. Submitted to Phys. Rev.
Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice
We study a two-species bosonic Hubbard model on a two-dimensional square
lattice by means of quantum Monte Carlo simulations and focus on finite
temperature effects. We show in two different cases, ferro- and
antiferromagnetic spin-spin interactions, that the phase diagram is composed of
solid Mott phases, liquid phases and superfluid phases. In the
antiferromagnetic case, the superfluid (SF) is polarized while the Mott
insulator (MI) and normal Bose liquid (NBL) phases are not. On the other hand,
in the ferromagnetic case, none of the phases is polarized. The
superfluid-liquid transition is of the Berezinsky-Kosterlitz-Thouless type
whereas the solid-liquid passage is a crossover.Comment: 9 pages, 13 figure
The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction
We study the one-dimensional Bose-Hubbard model using the Density-Matrix
Renormalization Group (DMRG).For the cases of on-site interactions and
additional nearest-neighbor interactions the phase boundaries of the
Mott-insulators and charge density wave phases are determined. We find a direct
phase transition between the charge density wave phase and the superfluid
phase, and no supersolid or normal phases. In the presence of nearest-neighbor
interaction the charge density wave phase is completely surrounded by a region
in which the effective interactions in the superfluid phase are repulsive. It
is known from Luttinger liquid theory that a single impurity causes the system
to be insulating if the effective interactions are repulsive, and that an even
bigger region of the superfluid phase is driven into a Bose-glass phase by any
finite quenched disorder. We determine the boundaries of both regions in the
phase diagram. The ac-conductivity in the superfluid phase in the attractive
and the repulsive region is calculated, and a big superfluid stiffness is found
in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure
Ground state phase diagram of spin-1/2 bosons in a two-dimensional optical lattice
We study a two-species bosonic Hubbard model on a two-dimensional square
lattice by means of quantum Monte Carlo simulations. In addition to the usual
contact repulsive interactions between the particles, the Hamiltonian has an
interconversion term which allows the transformation of two particles from one
species to the other. The phases are characterized by their solid or superfluid
properties and by their polarization, i.e. the difference in the populations.
When inter-species interactions are smaller than the intra-species ones, the
system is unpolarized, whereas in the opposite case the system is unpolarized
in even Mott insulator lobes and polarized in odd Mott lobes and also in the
superfluid phase. We show that in the latter case the transition between the
Mott insulator of total density two and the superfluid can be either of second
or first order depending on the relative values of the interactions, whereas
the transitions are continuous in all other cases.Comment: 10 pages, 17 figure
Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo
Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level
Robust testing procedures of process locations
Location of the process, Smooth adaptive estimator, Monte Carlo, Bootstrap, Normal test, t Test, Wilcoxon signed-rank test,
Application of a new system for classifying root canal morphology in undergraduate teaching and clinical practice: a national survey in Malaysia
Aim To evaluate and compare the feedback of final year undergraduate dental students in eight Malaysian dental schools on the application of a new system for classifying root canal morphology in teaching and clinical practice.
Methods One PowerPoint presentation describing two classification systems for root canal morphology (Oral Surgery Oral Medicine Oral Pathology, 1974 38, 456 and its supplemental configurations, International Endodontic Journal 2017, 50, 761) was delivered to final year undergraduate dental students in eight dental schools in Malaysia by two presenters (each presented to four schools). To examine students' feedback on the utility of each system, printed questionnaires consisting of six questions (five multiple choice questions and one open-ended question) were distributed and collected after the lecture. The questionnaire was designed to compare the classification systems in terms of accuracy, practicability, understanding of root canal morphology and recommendation for use in pre-clinical and clinical courses. The exact test was used for statistical analysis, with the level of significance set at 0.05 (P = 0.05).
Results A total of 382 (out of 447) students participated giving a response rate of 86%. More than 90% of students reported that the new system was more accurate and more practical compared with the Vertucci system (P 0.05). The students' responses for all questions were almost similar for both presenters (P > 0.05).
Conclusions The new system of International Endodontic Journal 2017, 50, 761 for classifying root and canal morphology was favoured by final year undergraduate dental students in Malaysia. The new system has the potential to be included in the undergraduate endodontic curriculum for teaching courses related to root and canal morphology
- …