118 research outputs found
THE TIGHT-BINDING APPROACH TO THE DIELECTRIC RESPONSE IN THE MULTIBAND SYSTEMS
Starting from the random phase approximation for the weakly coupled multiband
tightly-bounded electron systems, we calculate the dielectric matrix in terms
of intraband and interband transitions. The advantages of this representation
with respect to the usual plane-wave decomposition are pointed out. The
analysis becomes particularly transparent in the long wavelength limit, after
performing the multipole expansion of bare Coulomb matrix elements. For
illustration, the collective modes and the macroscopic dielectric function for
a general cubic lattice are derived. It is shown that the dielectric
instability in conducting narrow band systems proceeds by a common softening of
one transverse and one longitudinal mode. Furthermore, the self-polarization
corrections which appear in the macroscopic dielectric function for finite band
systems, are identified as a combined effect of intra-atomic exchange
interactions between electrons sitting in different orbitals and a finite
inter-atomic tunneling.Comment: 20 pages, LaTeX, no figure
Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson
The high density Frenkel exciton which interacts with a single mode
microcavity field is dealed with in the framework of the q-deformed boson. It
is shown that the q-defomation of bosonic commutation relations is satisfied
naturally by the exciton operators when the low density limit is deviated. An
analytical expression of the physical spectrum for the exciton is given by
using of the dressed states of the cavity field and the exciton. We also give
the numerical study and compare the theoretical results with the experimental
resultsComment: 6 pages, 2 figure
Chaos assisted tunnelling with cold atoms
In the context of quantum chaos, both theory and numerical analysis predict
large fluctuations of the tunnelling transition probabilities when irregular
dynamics is present at the classical level. We consider here the
non-dissipative quantum evolution of cold atoms trapped in a time-dependent
modulated periodic potential generated by two laser beams. We give some precise
guidelines for the observation of chaos assisted tunnelling between invariant
phase space structures paired by time-reversal symmetry.Comment: submitted to Phys. Rev. E ; 16 pages, 13 figures; figures of better
quality can be found at http://www.phys.univ-tours.fr/~mouchet
Advances in multispectral and hyperspectral imaging for archaeology and art conservation
Multispectral imaging has been applied to the field of art conservation and art history since the early 1990s. It is attractive as a noninvasive imaging technique because it is fast and hence capable of imaging large areas of an object giving both spatial and spectral information. This paper gives an overview of the different instrumental designs, image processing techniques and various applications of multispectral and hyperspectral imaging to art conservation, art history and archaeology. Recent advances in the development of remote and versatile multispectral and hyperspectral imaging as well as techniques in pigment identification will be presented. Future prospects including combination of spectral imaging with other noninvasive imaging and analytical techniques will be discussed
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Guidelines for the management of biliary tract and ampullary carcinomas: surgical treatment
The only curative treatment in biliary tract cancer is surgical treatment. Therefore, the suitability of curative resection should be investigated in the first place. In the presence of metastasis to the liver, lung, peritoneum, or distant lymph nodes, curative resection is not suitable. No definite consensus has been reached on local extension factors and curability. Measures of hepatic functional reserve in the jaundiced liver include future liver remnant volume and the indocyanine green (ICG) clearance test. Preoperative portal vein embolization may be considered in patients in whom right hepatectomy or more, or hepatectomy with a resection rate exceeding 50%–60% is planned. Postoperative complications and surgery-related mortality may be reduced with the use of portal vein embolization. Although hepatectomy and/or pancreaticoduodenectomy are preferable for the curative resection of bile duct cancer, extrahepatic bile duct resection alone is also considered in patients for whom it is judged that curative resection would be achieved after a strict diagnosis of its local extension. Also, combined caudate lobe resection is recommended for hilar cholangiocarcinoma. Because the prognosis of patients treated with combined portal vein resection is significantly better than that of unresected patients, combined portal vein resection may be carried out. Prognostic factors after resection for bile duct cancer include positive surgical margins, especially in the ductal stump; lymph node metastasis; perineural invasion; and combined vascular resection due to portal vein and/or hepatic artery invasion. For patients with suspected gallbladder cancer, laparoscopic cholecystectomy is not recommended, and open cholecystectomy should be performed as a rule. When gallbladder cancer invading the subserosal layer or deeper has been detected after simple cholecystectomy, additional resection should be considered. Prognostic factors after resection for gallbladder cancer include the depth of mural invasion; lymph node metastasis; extramural extension, especially into the hepatoduodenal ligament; perineural invasion; and the degree of curability. Pancreaticoduodenectomy is indicated for ampullary carcinoma, and limited operation is also indicated for carcinoma in adenoma. The prognostic factors after resection for ampullary carcinoma include lymph node metastasis, pancreatic invasion, and perineural invasion
Revival of the Magnetar PSR J1622-4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR
New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100 larger than during its dormant state. The X-ray flux one month after reactivation was at least 800 larger than during quiescence, and has been decaying exponentially on a 111 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation
Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network
Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism
- …