394 research outputs found

    Neonatal exposure to estradiol-17β modulates tumour necrosis factor alpha and cyclooxygenase-2 expression in brain and also in ovaries of adult female rats

    Get PDF
    The sexually dimorphic organization in perinatal rat brain is influenced by steroid hormones. Exposure to high levels of estrogen or endocrine-disrupting compounds during perinatal period may perturb this process, resulting in compromised reproductive physiology and behavior as observed in adult In our recent observation neonatal exposure of the female rats to estradiol-17β resulted in down-regulation of TNF-α, up-regulation of COX-2 and increase in SDN-POA size in pre-optic area in the adulthood. It is known that the control of reproductive performance in female involves a complex interplay of the hypothalamus, pituitary, and ovary. The present study was undertaken to understand the possible molecular mechanism involved in changes observed in the ovarian morphology and expression of selected genes in the ovary. Administration of estradiol-17β (100 μg) on day 2 and 3 after birth revealed up-regulation of ER-α, ER-β, COX-2 and down-regulation of TNF-α expression. Also the decrease in the ovarian weight, altered ovarian morphology and changes in the 2D protein profiles were also seen. This is apparently the first report documenting that neonatal estradiol exposure modulates TNF-α and COX-2 expression in the ovary as seen during adult stage. Our results permit us to suggest that cues originating from the modified brain structure due to neonatal exposure of estradiol-17β remodel the ovary at the molecular level in such a way that there is a disharmony in the reproductive function during adulthood and these changes are perennial and can lead to infertility and changes of reproductive behavior

    Observable Neutron-Antineutron Oscillations in Seesaw Models of Neutrino Mass

    Get PDF
    We show that in a large class of supersymmetric models with spontaneously broken B-L symmetry, neutron--antineutron oscillations occur at an observable level even though the scale of B-L breaking is very high, v_{B-L} ~ 2 x 10^{16} GeV, as suggested by gauge coupling unification and neutrino masses. We illustrate this phenomenon in the context of a recently proposed class of seesaw models that solves the strong CP problem and the SUSY phase problem using parity symmetry. We obtain an upper limit on N-\bar{N} oscillation time in these models, \tau_{N-\bar{N}} < 10^{9} -10^{10} sec. This suggests that a modest improvement in the current limit on \tau_{N-\bar{N}} of 0.86 x 10^8 sec will either lead to the discovery of N-\bar{N} oscillations, or will considerably restrict the allowed parameter space of an interesting class of neutrino mass models.Comment: 11 pages RevTeX, 1 figur

    Some Implications of Neutron Mirror Neutron Oscillation

    Full text link
    We comment on a recently discussed possibility of oscillations between neutrons and degenerate mirror neutrons in the context of mirror models for particles and forces. It has been noted by Bento and Berezhiani that if these oscillations occurred at a rate of τNN1sec1\tau^{-1}_{NN'}\sim sec^{-1}, it would help explain putative super GKZ cosmic ray events provided the temperature of the mirror radiation is 0.30.4\sim 0.3-0.4 times that of familiar cosmic microwave background radiation. We discuss how such oscillation time scales can be realized in mirror models and find that the simplest nonsupersymmetric model for this idea requires the existence of a low mass (30-3000 GeV) color triplet scalar or vector boson. A supersymmetric model, where this constraint can be avoided is severely constrained by the requirement of maintaining a cooler mirror sector. We also find that the reheat temperature after inflation in generic models that give fast nnn-n' oscillation be less than about 300 GeV in order to maintain the required relative coolness of the mirror sector.Comment: 12 pages, 2 figures; minor changes in the text; accepted for publication in Phys. Lett.

    A Honeycomb Proportional Counter for Photon Multiplicity Measurement in the ALICE Experiment

    Full text link
    A honeycomb detector consisting of a matrix of 96 closely packed hexagonal cells, each working as a proportional counter with a wire readout, was fabricated and tested at the CERN PS. The cell depth and the radial dimensions of the cell were small, in the range of 5-10 mm. The appropriate cell design was arrived at using GARFIELD simulations. Two geometries are described illustrating the effect of field shaping. The charged particle detection efficiency and the preshower characteristics have been studied using pion and electron beams. Average charged particle detection efficiency was found to be 98%, which is almost uniform within the cell volume and also within the array. The preshower data show that the transverse size of the shower is in close agreement with the results of simulations for a range of energies and converter thicknesses.Comment: To be published in NIM

    Coupling Unification, GUT-Scale Baryogenesis and Neutron-Antineutron Oscillation in SO(10)

    Full text link
    We show that unification of the three gauge couplings can be realized consistently in a class of non-supersymmetric SO(10) models with a one-step breaking to the Standard Model if a color-sextet scalar field survives down to the TeV scale. Such scalars, which should be accessible to the LHC for direct detection, arise naturally in SO(10) as remnants of the seesaw mechanism for neutrino masses. The diquark couplings of these scalars lead to \Delta B = 2 baryon number violating processes such as neutron-antineutron oscillation. We estimate the free neutron-antineutron transition time to be \tau_{n-\bar{n}} \approx (10^9-10^{12}) sec., which is in the interesting range for next generation n-\bar{n} oscillation experiments. These models also realize naturally the recently proposed (B-L)-violating GUT scale baryogenesis which survives to low temperatures unaffected by the electroweak sphaleron interactions.Comment: 15 pages, 4 eps figures, references added, to appear in Phys. Lett.

    Impact of predicted precipitation scenarios on multitrophic interactions

    Get PDF
    1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios

    An integrated approach to the assessment of long range correlation in time series data

    Full text link
    To assess whether a given time series can be modeled by a stochastic process possessing long range correlation one usually applies one of two types of analysis methods: the spectral method and the random walk analysis. The first objective of this work is to show that each one of these methods used alone can be susceptible to producing false results. We thus advocate an integrated approach which requires the use of both methods in a consistent fashion. We provide the theoretical foundation of this approach and illustrate the main ideas using examples. The second objective relates to the observation of long range anticorrelation (Hurst exponent H < 1/2) in real world time series data. The very peculiar nature of such processes is emphasized in light of the stringent condition under which such processes can occur. Using examples we discuss the possible factors that could contribute to the false claim of long range anticorrelations and demonstrate the particular importance of the integrated approach in this case.Comment: 15 pages, 33 figure
    corecore