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Abstract

We show that in a large class of supersymmetric models with spontaneously brokenB–L symmetry, neutron–antineutron
oscillations occur at an observable level even though the scale ofB–L breaking is very high,vB–L ∼ 2×1016 GeV, as suggested
by gauge coupling unification and neutrino masses. We illustrate this phenomenon in the context of a recently proposed class
of seesaw models that solves the strong CP problem and the SUSY phase problem using parity symmetry. We obtain anupper
limit on N–�N oscillation time in these models,τN–�N � 109–1010 s. This suggests that a modest improvement in the current

limit on τN–�N of 0.86× 108 s will either lead to the discovery ofN–�N oscillations, or will considerably restrict the allowed
parameter space of an interesting class of neutrino mass models.

1. Introduction

It is widely believed that the most natural and ap-
pealing explanation of the recent neutrino oscillation
results is provided by the seesaw mechanism [1] in-
corporated into extensions of the Standard Model that
include a localB–L symmetry. The simplest models
with local B–L symmetry are the left–right symmet-
ric models [2] based on the gauge groupSU(3)C ×
SU(2)L ×SU(2)R ×U(1)B–L. These models have the
additional virtue that they explain the origin of par-
ity violation in weak interactions as a consequence
of spontaneous symmetry breaking in very much the
same way as one explains the strength of the weak
interaction in the Standard Model. Stability of the
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Higgs sector under radiative corrections calls for weak
scale supersymmetry as in the Minimal Supersym-
metric Standard Model (MSSM). It has recently been
shown that if the MSSM is embedded into a left–
right symmetric framework at a high scalevR ∼ 1014–
1016 GeV, as suggested by neutrino oscillation data
and by gauge coupling unification, it helps solve some
important problems faced by the MSSM, viz., the
SUSY CP problem [3], the strong CP problem [4] and
the µ problem. Supersymmetric models with such a
high scale embedding are, therefore, attractive candi-
dates for physics beyond the Standard Model.

It was noted many years ago [5] that the electric
charge formula of the left–right symmetric models,
Q = I3L + I3R + B–L

2 , allows one to conclude from
pure group theoretic arguments that parity symmetry
breaking implies a breakdown ofB–L symmetry as
well with the constraint that 2�I3R = −�(B–L).
This simple relation is profoundly revealing. It says
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that the neutrinos must be Majorana particles since
the lepton number breaking terms in the theory must
obey|�L| = 2 selection rule. This conclusion follows
directly if Higgs triplets are used to breakSU(2)R
symmetry sinceI3R = 1 for triplets, it also holds when
Higgs doublets are used for this purpose, since gauge
invariance requires the presence of two such doublets
in the mass term for the neutrinos. Secondly, for purely
hadronic baryon number violating processes, baryon
number must change by at least two units,|�B| = 2.
This means that models based on left–right symmetric
gauge structure can lead to the process where a neutron
transforms itself into an antineutron (N–�N oscillation
[5–7]), while they may forbid the decay of the proton,
which is a�B = 1 process.

While the above group theory argument predicts the
existence ofN–�N oscillation in left–right symmetric
models, its strength will depend on the details of
the model. Using simple-dimensional analysis it is
easy to find that the lowest-dimensional operators that
contributes toN–�N oscillation are six quark operators,
a typical one being(ucdcucdcdcdc). This operator
has dimension 9 and, therefore, the coupling strength
scales asG�B=2 ∼ 1

M5 , whereM is the scale of new
physics. It is natural to identifyM with the scale of
B–L (or parity) breaking. The current lower limit on
N–�N oscillation time,τN–�N � 0.86 × 108 s [8],1

implies an upper limitG�B=2 � 3 × 10−28 GeV−5.
ForN–�N oscillations to be observable then, the scale
M should be rather low,M � 106 GeV.

One class of models where�B = 2 transition man-
ifests itself through Higgs boson exchange has been
discussed in Ref. [5]. There it was shown that if
the SU(3)C × SU(2)L × SU(2)R × U(1)B–L model
is embedded into theSU(4)C × SU(2)L × SU(2)R
gauge group, thenN–�N oscillations can arise at an
observable level if theSU(4)C breaking scale is in
the 100 TeV range. In these models,N–�N oscilla-
tion amplitude is intimately tied to an understanding
of small neutrino masses via the seesaw mechanism
as well as the breaking of quark–lepton degeneracy
implied by SU(4)C symmetry. The same Higgs field

1 This is the direct limit from free neutron oscillation searches.
Indirect limits which involves some reasonable nuclear physics
assumptions have been extracted from nucleon decay experiments
which are slightly more stringent:τN–�N � 1.2× 108 s [9].

that breaksSU(4)C and generates heavy Majorana
masses for the right-handed neutrinos also mediate
N–�N oscillations here. With the scale ofSU(4)C
breaking in the 100 TeV range, these models would ap-
pear to be incompatible with gauge coupling unifica-
tion. Furthermore, such a low scale of parity breaking
would not yield naturally neutrino masses in the range
suggested by current experiments. If we raise the scale
of parity/SU(4)C breaking to values above 1012 GeV,
so that small neutrino masses in the right range are
generated naturally, thenN–�N transition amplitude
becomes unobservably small in these models.2

Does the above arguments mean thatN–�N oscilla-
tions are beyond experimental reach based on current
neutrino oscillation phenomenology? In this Letter we
will show that this is not the case in a class of attrac-
tive seesaw models with localB–L symmetry. We will
see that in these models a new class of�B = 1 op-
erators is induced as a consequence of parity break-
ing. These operators lead to observableN–�N oscil-
lation despite the scalevR of parity breaking being
close to the conventional GUT scale of 2× 1016 GeV.
In fact,G�B=2 increases withvR and, therefore, one
has the inverse phenomenon that increasingvR leads
to strongerN–�N oscillation amplitude. Interestingly,
the scalevR implied by neutrino masses is such that
N–�N oscillation should be accessible experimentally
with a modest improvement in the current limit. We
obtain anupper limit of τN–�N � 108–1010 s in this
class of models. This prediction becomes sharper in a
concrete model where flavor symmetries reduce con-
siderably the uncertainties in the estimate ofτN–�N . We
emphasize that our upper limit is derived in the context
of conventional seesaw models of neutrino mass with-
out using any special ingredients to enhanceN–�N os-
cillation amplitude. This should provide new impetus
for an improved experimental search forN–�N oscilla-
tions.

2 A counter example where a higher scale of parity violation
can go hand in hand with observableN–�N oscillation was noted
in the context of a SUSYSU(2)L × SU(2)R × SU(4)C model in
Ref. [10]. These models possess accidental symmetries that lead to
light (∼ 100 GeV) diquark Higgs bosons even though the scale of
parity violation is high. As a result, theN–�N oscillation operator
can have observable strength. Unification of gauge couplings is,
however, difficult to achieve in these models.
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2. High scale seesaw model and N–�N oscillation

The basic framework of our model involves the
embedding of the MSSM into a minimal SUSY left–
right gauge structure at a scalevR close to the GUT
scale. The electroweak gauge group of the model, as
already mentioned, isSU(2)L × SU(2)R × U(1)B–L
with the standard assignment of quarks and leptons—
left-handed quarks and leptons (Q,L) transform as
doublets ofSU(2)L, while the right-handed conjugate
ones (Qc,Lc) are doublets ofSU(2)R . The quarksQ
transform under the gauge group as(2,1,1/3) and
Qc as(1,2,−1/3), while the lepton fieldsL andLc

transform as(2,1,−1) and (1,2,+1), respectively.
The Dirac masses of fermions arise through their
Yukawa couplings to two Higgs bidoubletΦa(2,2,0),
a = 1 − 2. The SU(2)R × U(1)B–L symmetry is
broken down toU(1)Y in the supersymmetric limit
by B–L = ±1 doublet scalar fields, the right-handed
doublet denoted byχc(1,2,−1) accompanied by its
left-handed partnerχ(2,1,1). Anomaly cancellation
requires the presence of their charge conjugate fields
as well, denoted as̄χc(1,2,1) and χ̄(2,1,−1). The
vacuum expectation values (VEVs)〈χc〉 = 〈χ̄ c〉 =
vR break the left–right symmetry group down to the
MSSM gauge symmetry. A singletS is also used to
facilitate symmetry breaking in the SUSY limit.

It has recently been shown that if there exists aZ4 R

symmetry, the minimal model just described will solve
the strong CP problem and the SUSY phase problem
based on parity symmetry [4]. Furthermore, theµ term
will have a natural origin. One possibleZ4 assignment
was given in Ref. [4]. Here we present a slight
variant, which yields the same superpotential at the
renormalizable level as in Ref. [4] and thus preserves
all its success. Under thisZ4, the superpotentialW
changes sign, as dod2θ and d2θ̄ . The quark fields
(Q,Qc) are even, while(L,Lc) transform as(i,−i).
The fields(χ, χ̄ ,χc, χ̄c,Φa,S) are all odd underZ4.

The gauge invariant superpotential consistent with
thisZ4 R symmetry at the renormalizable level is

W = haQΦaQ
c + h′

aLΦaL
c + λaχΦaχ

c

+ λ′
aχ̄Φaχ̄

c

+ κS
(
eiξχcχ̄c + e−iξ χχ̄ + aS2 −M2)

(1)+µab Tr(ΦaΦb)S.

This superpotential breaks the gauge symmetry to that
of the Standard Model in the SUSY limit without
leaving any unwanted Goldstone bosons and induces
realistic quark masses and mixings.

The baryon number violating processes as well
as neutrino masses arise in this model from higher-
dimensional operators induced by Planck scale
physics. They will be the main focus of the rest of the
Letter. We shall pay special attention to the relation
between the neutrino mass and theN–�N oscillation
time. The relevant dimension four operators in the su-
perpotential which are scaled byM−1

Pl and are allowed
by theZ4 symmetry are:

O1 = f
[(
Lcχc

)2 + (Lχ)2
]
,

(2)O2 = f ′[QcQcQcχ̄c +QQQχ̄
]
.

OperatorO1 gives rise to Majorana masses forνR
of order v2

R/MPl. Combining this with the Dirac
neutrino masses arising from Eq. (1), small neutrino
masses will be generated by the seesaw mechanism.
For vR ∼ 1014–1016 GeV, the magnitude of the light
neutrino masses are in the right range to explain the
atmospheric and the solar neutrino oscillation data.
OperatorO2, which is also invariant under theZ4,
leads to baryon number violation. WhileO1,2 could
have their origin in quantum gravity, they may also
be induced by integrating out vector states that have
Z4-invariant masses of order the Planck scale.

Note that operators such asLΦχc,LLLcχc,

QLQcχc are not allowed by theZ4 symmetry. If they
were present along withO2, they would lead to rapid
proton decay. Note also that the well known proton
decay operatorQQQL is not allowed by theZ4 sym-
metry. In any case its presence would not have been
a problem since it is scaled by the Planck mass and
therefore can lead to a proton lifetime consistent with
the present lower limit.

To see the connection between neutrino masses
and theN–�N oscillation timeτN–�N ≡ (1/δmN–�N)
qualitatively, first we note that the operatorO1 leads
to the Majorana mass for the right handed neutrino
MR = f v2

R/MPl. The seesaw formula then leads to
the relationmν =MPlm

2
νD
/(f v2

R). On the other hand,
the operatorO2 leads to a�B = 1 operator with
strengthvR/MPl. Leaving aside the details of the
flavor structure ofO2 and how actuallyδmN–�N arises,
it is clear that we have a simple linear relation between
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the neutrino masses and theN–�N oscillation time:

(3)mν = C
τN–�N
MPl

,

whereC is a dimensional constant which depends
only on the details of weak scale physics and does
not involve the high scalevR . We will evaluateC in
the next section. This simple relation makes it clear
that our present knowledge of the neutrino masses
allows a direct prediction of theN–�N oscillation time
in the context of the supersymmetric left–right models
broken by doublet Higgs fields.

3. From supersymmetric �B = 1 operator to
N– �N oscillations

Let us now proceed to examine the expectedN–�N
oscillation time resulting from the�B = 1 operator
O2 of Eq. (2). An important point to note here is that
sinceO2 is a superpotential term with antisymmet-
ric color contraction it must have antisymmetric fla-
vor contraction as well. The flavor structure of this op-
erator is then of the typeucdcsc , ucdcbc or ucscbc

in terms of the superfields. We must then use flavor
mixings to obtain the fermionic operator of the type
ucdcdc and then the six quarkN–�N operator. The
dominant contribution to this process comes from the
Feynman diagram shown in Fig. 1 which proceeds
through the exchange of a gluino and squarks [11]
and involves twod̃c–b̃c mixings. The strength of the
�B = 2 operator resulting from Fig. 1 can be esti-
mated to be

(4)G�B=2 � 2g2
3

[
(δ13
RR)

]2
f ′2

Mg̃m
4
q̃

,

whereMg̃ is the gluino mass,mq̃ is the squark mass
and

(
δ13
RR

)
is the d̃c–b̃c mixing angle. The effective

baryon number violatingucdcbc Yukawa coupling in
the superpotential is parametrized here asf ′(vR/MPl)

(see Eq. (2)).
Let us first discuss the origin of the flavor mixing

that changes aucdcbc operator to the requireducdcdc

operator. The dominant source for this in the present
context turns out to be the mixing of̃bc with d̃c.
Such mixings occur in the left–right supersymmetric
model since the right-handed quark mixings are phys-
ical above the scalevR . The renormalization group

Fig. 1. Tree level gluino–squark diagram forN–�N oscillations.

evolution of the soft SUSY breaking mass parame-
ters betweenMPl andvR will then induce mixings in
the right-handed down squark sector proportional to
the top-quark Yukawa coupling and the right-handed
CKM mixings. This is analogous to the RGE evolu-
tion in the MSSM inducing squark mixing in the left-
handed down squark sector proportional to the left-
handed CKM angles and the top-quark Yukawa cou-
pling. We estimate this right-handed̃dc–b̃c mixing to
be

(
δ13
RR

) � λ2
t (3m

2
0 +A2

0)

8π2(m2
0 + 8M2

1/2)
(V ∗

tdVtb) ln(MPl/vR)

(5)� 2× 10−4.

This estimate is obtained by integrating out the RGE
betweenMPl andvR assuming universality of masses
at MPl [12]. Since abovevR , both tc andbc are part
of the sameSU(2)R multiplet, unlike in the MSSM,
bc Yukawa coupling is of order one. In this momentum
range, the top-quark Yukawa coupling reduces the
mass of b̃c. In going to the physical basis of the
quarks, this effect will induce the squark mixing
quoted in Eq. (5). For the numerical estimate we took
m0 = M1/2 andA0 = 0 and vR ∼ 2 × 1016 GeV for
illustration.

There is a second source of flavor violation that in-
ducesd̃c–b̃c mixing in general SUSY models. That is
the baryon number violating Yukawa couplings them-
selves. If we write in standard notation, the effec-
tiveB-violating superpotential arising from Eq. (2) as
W ⊃ (λ′′

ijk/2)u
c
i d

c
j d

c
k , the RGE evolution from Planck

scale to the weak scale will inducẽdc–b̃c mixing pro-
portional toλ′′

ijk . For example, if we keep only the
couplings involving theuc quark, viz.,λ′′

123, λ
′′
113 and
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λ′′
112, we can estimate the induced

(
δ13
RR

)
by integrat-

ing the relevant RGE [13] to be

(6)
(
δ13
RR

) � λ′′
121λ

′′
123

4π2

(3m2
0 +A2

0)

(m2
0 + 8M2

1/2)
ln(MPl/MZ).

Recalling thatλ′′ ∼ vR/MPl, we see that while this
source of flavor mixing may not be negligible, it would
be typically smaller than the ones from the right-
handed quark mixings of Eq. (5).

A third source of flavor violation relevant for
N–�N oscillations has been identified in Ref. [14]
involving the exchange of the Wino. Such diagrams
will have an electroweak loop suppression and a
chirality suppression necessary to convert the left-
handed squark to the right-handed one. We find that
this contribution toδmN–�N has a suppression factor

given approximately by
[
(α2/4π)(mb/mq̃)

]2 ∼ 1 ×
10−9 (valid for small tanβ) which is about two orders
of magnitude smaller in this class of models compared
to the gluino exchange diagram of Fig. 1.

One has to calculate the hadronic matrix element
of the six quark operator in order to obtain the
τN–�N . This has been discussed in several places in
the literature [15]. The calculations of this “conver-
sion” factor can be done using crude physical argu-
ments, according to which one has to multiply the
G�B=2 by |ψ(0)|4 to obtain δmN–�N where ψ is
the baryonic wave function for three quarks inside
a nucleon. On dimensional grounds, one can deduce
that |ψ(0)|4 � Λ6

QCD, which implies thatδmN–�N ∼
10−5G�B=2 GeV. More detailed bag model calcu-
lations have been carried out. Rao and Shrock in
Ref. [15] quote this conversion factor to be 2.5 ×
10−5G�B=2. We shall use this number for our numer-
ical illustrations.

Combining this matrix element with Eqs. (4), (5) we
obtain

τN–�N � 7× 108 s

f ′2

(
2× 1014 GeV

vR

)2

(7)×
(

Mg̃

500 GeV

)(
mq̃

500 GeV

)4

.

We can rewrite Eq. (7) in a form that makes the
connection with the neutrino mass more transparent.
The mass ofντ can be expressed through the seesaw

formula from Eq. (2) asmντ = (
mνDτ

)2
MPl/

(
f v2

R

)

wheremνDτ
denotes the Dirac mass ofντ . Eliminating

the high scalevR from this, we have from Eq. (7),

τN–�N � 2.8× 104 s

(
f

f ′2

)(
mντ

0.06 eV

)(
mt

mνDτ

)2

(8)×
(

Mg̃

500 GeV

)(
mq̃

500 GeV

)4

.

Since the value ofmντ can be determined from the
atmospheric neutrino data under certain assumptions,
we conclude that within the seesaw framework, mea-
surement ofN–�N oscillation will be a measure of the
Dirac mass of the tau neutrino. This can then be used
as a way to discriminate between models of neutrino
masses.

To see the specific prediction forN–�N oscillations
within the context of the class of models under
consideration, we need to know theντ Dirac mass.
We can estimate it from the following relations for
the Dirac masses of the third generation quarks and
leptons in the SUSY left–right model:

mt = (ht,1 cosαu + ht,2 sinαu)vu,

mb = (ht,1 cosαd + ht,2 sinαd)vd ,

mνDτ
= (hτ,1 cosαu + hτ,2 sinαu)vu,

(9)mτ = (hτ,1 cosαd + hτ,2 sinαd)vd.

Hereαu,d are the Higgs mixing parameters obtained
from Eq. (1) (Eg: tanαu = λ1/λ2) and vu,d are the
VEVs of the MSSM doublets. From Eq. (9) it follows
that in the limit ofht,1 � ht,2 andhτ,1 � hτ,2, we get
mνDτ

�mτ
mt

mb
. Since at such high scalesmb �mτ , this

predictsmνDτ
�mt . In fact, we find that unless the two

terms in Eq. (9) formνDτ
are precisely canceled, the

Dirac mass ofντ will be approximately equal tomt .
Using mνDτ

� mt and f ∼ 1, f ′ ∼ 10−1, we

get a value for theN–�N oscillation time which is
tantalizingly close to the present experimental lower
limit [8]. For values ofmνDτ

10 times smaller than
mt , and taking the supersymmetric particle masses as
large as 1 TeV, we see thatτN–�N is less than 9× 109

seconds,3 which is in the range accessible to a recently

3 We have not included the QCD evolution factor from the SUSY
scale of few hundred GeV to the GeV scale. Based on the QCD
factor of 1.33 for the three quark proton decay operator [16], we
estimate that the corresponding factor for theN–�N case should be
about 2, which would reduce the estimate ofτN–�N by a factor of 2.
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proposed experiment [17]. It would thus appear that a
search for neutron–antineutronoscillation will provide
an enormously useful window into neutrino mass
models and as such a powerful constraint on the nature
of new physics beyond the Standard Model.

The prediction forN–�N oscillations can be sharp-
ened if we make use of flavor symmetries to deter-
mine the coefficientsf andf ′ in Eq. (8). We illustrate
this with a specific choice of flavor symmetry [18]
taken to beSU(2)H ×U(1)H . The first two families of
fermions form doublets ofSU(2)H and have aU(1)H
charge of+1 while the third family fermions are sin-
glets under both groups. This flavor symmetry is bro-
ken by a pair of doubletsφ(1) + φ̄(−1) and singlets
χ(1) + χ̄(−1). Allowing for effective operators sup-
pressed by a scaleM larger than the VEVs of these
fields provides a natural explanation of the fermion
mass and mixing angle hierarchy. If we choose〈φ〉 =
〈φ̄〉 = εφM and 〈χ〉 = 〈χ̄〉 = εχM, a reasonable fit
to all quark and lepton masses is obtained, including
neutrinos, forεφ � 1/7 and εχ � 1/20 and all di-
mensionless couplings being order one [18]. In this
model, we can estimate the couplingsf andf ′ from
the horizontal quantum numbers. They aref ∼ ε2

φ and

f ′ � ε2
χ sinθC , so that4 f/f ′2 � 8 × 104. This esti-

mate leads toτN–�N � 2×109 s from Eq. (8). Allowing
for uncertainties of order 1 in this estimate, we expect
thatτN–�N not to exceed about 1010 s.

Before we conclude a few comments are in order:

1. The model becomes unacceptable as soon as
SU(3)C × U(1)B–L is embedded into a higher
symmetry such asSU(4)C or SO(10) group be-
cause in that case, the�B = 1 operator described
in Eq. (2) is accompanied by otherR-parity vi-
olating operators coming from the same higher
dimensional operatorO1,2 due to the higher
symmetry. Together, they would lead to unac-
ceptable proton decay rate. Thus observation of
N–�N oscillation would be a signal of an explicit

4 Normally, the parameterf could have been of order one but
in the horizontal model or Ref. [18], due to largeνµ–ντ mixing,
it is the νµ flavor entry that dominates the atmospheric neutrino
mass difference and hence the horizontal suppression factorε2

φ . The

ε2
χ factor is due the fact that the operator must be invariant under
U(1)H .

SU(3)C × U(1)B–L symmetry all the way upto
the Planck (or string) scale.

2. Baryogenesis has to proceed through a weak
scale scenario since the�B = 1 interactions in
the model are in equilibrium down to the TeV
scale and will wash out any primordial baryon
or lepton asymmetry. We note that the baryon
number violating interactions contained inO2
themselves can potentially be the source of weak
scale baryogenesis [19].

3. The lightest neutralino in this model is unstable
and will decay viaχ0 → qqq modes due to the
presence of the effective�B = 1 operatorO2.
This prediction is directly testable at colliders.
An alternative candidate for dark matter must be
sought.

4. Conclusions

In conclusion, we have found that in a large class
of seesaw models for neutrino masses, despite the
high scale of seesaw dictated by the current neutrino
oscillation data, neutron–antineutron oscillation is in
the observable range. In fact, unless the Dirac masses
of neutrinos are far below those deduced under simple
and reasonable assumptions, we predict an upper
bound on the neutron–antineutron oscillation time in
the range of 109–1010 s. This is very close to the
present experimental lower limit onN–�N oscillations.
In the most conservative theoretical scenario, the
measurement ofN–�N oscillation time would be a
measure of the Dirac mass for the tau neutrino, given
the values of squark masses. This in itself would
be an extremely interesting result, since it would
discriminate among theoretical models of neutrino
masses. This is apart from the fundamental importance
that any observation of baryon number violation will
carry. We, therefore, strongly urge a new experimental
search for neutron–antineutron oscillation.
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