355 research outputs found

    Catheter insertion techniques for improving catheter function and clinical outcomes in peritoneal dialysis patients (Protocol)

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: This review aims to look at the benefits and harms of different PD catheter insertion techniques. To establish whether a specific technique used to place catheters in adults and children, who are new to PD, result in any significant differences in clinical outcomes. Insertion techniques will be further defined as peritoneoscopic, percutaneous, fluoroscopic, laparoscopic insertion or open surgery. To identify which technique offers optimal clinical outcomes and minimises post-procedure complications including postoperative haemorrhage, PD catheter dysfunction, exit site infection/peritonitis and bowel perforation

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria

    Get PDF
    Resurrecting extinct species is a fascinating and challenging idea for scientists and the general public. Whereas some theoretical progress has been made for animals, the resurrection of extinct plants (de-extinction sensu lato) is a relatively recently discussed topic. In this context, the term ‘de-extinction’ is used sensu lato to refer to the resurrection of ‘extinct in the wild’ species from seeds or tissues preserved in herbaria, as we acknowledge the current impossibility of knowing a priori whether a herbarium seed is alive and can germinate. In plants, this could be achieved by germinating or in vitro tissue-culturing old diaspores such as seeds or spores available in herbarium specimens. This paper reports the first list of plant de-extinction candidates based on the actual availability of seeds in herbarium specimens of globally extinct plants. We reviewed globally extinct seed plants using online resources and additional literature on national red lists, resulting in a list of 361 extinct taxa. We then proposed a method of prioritizing candidates for seed-plant de-extinction from diaspores found in herbarium specimens and complemented this with a phylogenetic approach to identify species that may maximize evolutionarily distinct features. Finally, combining data on seed storage behaviour and longevity, as well as specimen age in the novel ‘best de-extinction candidate’ score (DEXSCO), we identified 556 herbarium specimens belonging to 161 extinct species with available seeds. We expect that this list of de-extinction candidates and the novel approach to rank them will boost research efforts towards the first-ever plant de-extinction

    Middle to late Pleistocene palaeoecological reconstructions and palaeotemperature estimates for cold/cool stage deposits at Whittlesey, eastern England

    Get PDF
    Fossiliferous beds in a complex sequence of late Middle to Late Pleistocene deposits at Whittlesey, eastern England, provided a rare opportunity for a multidisciplinary study of the palaeoecology of cool/cold stage deposits from different glacial stages. The fossiliferous sediments investigated form part of the River Nene 1st Terrace. Three of the four fossil assemblages investigated pre-date the last interglacial stage (Ipswichian/Eemian/marine oxygen isotope stage (MIS) 5e), whereas the other dates to part of the MIS 3 interstadial complex (Middle Devensian/Weichselian). Pollen, plant macrofossil, molluscan, coleopteran, ostracod, foraminifera and vertebrate data are available to a greater or lesser extent for each cool/cold stage assemblage, and they broadly present the same ecological picture for each one: a continuum from low-energy permanent to non-permanent aquatic habitats through marshland with associated waterside taxa, together with flood influxes of fluvial, riparian and ruderal taxa. Although each fossil assemblage records cool/cold climatic conditions, to a greater or lesser extent, these conditions are more apparent in the insect and ostracod faunas. In comparison with results published for the Last Glacial Maximum (LGM) stadial in The Netherlands, palaeotemperature estimates based on ranges of mutual agreement between independent coleopteran and ostracod methods for the three pre-Ipswichian/Eemian assemblages indicate minimum mean July air temperatures that are from +1° to +3 °C warmer, but January values that embrace the −8 °C estimate for the LGM. There is, however, a disparity between the coleopteran and ostracod palaeotemperature estimates for the Middle Devensian/Weichselian fossil assemblage, which are based on two different sample stratigraphic levels; the lower, coleopteran assemblage is indicative of very cool, continental climates, whereas the stratigraphically slightly higher ostracod assemblage suggests a climatic amelioration. Lack of numerical age-estimates prevents a robust stratigraphical interpretation, but the youngest pre-Ipswichian/Eemian fossil assemblage could date to the MIS 7–6 transition, at a time when cooling possibly preceded glacially driven sea-level fall. It is apparent from the rich coleopteran data that some continental cold-indicator taxa also appeared in pre-Ipswichian/Eemian cold stages and therefore assignment of continental cold-indicator taxa to particular Devensian/Weichselian intervals should be undertaken with care

    Regions of the genome that affect agronomic performance in two-row barley

    Get PDF
    Quantitative trait locus (QTL) main effects and QTL by environment (QTL × E) interactions for seven agronomic traits (grain yield, days to heading, days to maturity, plant height, lodging severity, kernel weight, and test weight) were investigated in a two-row barley (Hordeum vulgare L.) cross, Harrington/TR306. A 127-point base map was constructed from markers (mostly RFLP) scored in 146 random double-haploid (DH) lines from the Harrington/TR306 cross. Field experiments involving the two parents and 145 random DH lines were grown in 1992 and/or 1993 at 17 locations in North America. Analysis of QTL was based on simple and composite interval mapping. Primary QTL were declared at positions where both methods gave evidence for QTL. The number of primary QTL ranged from three to six per trait, collectively explaining 34 to 52% of the genetic variance. None of these primary QTL showed major effects, but many showed effects that were consistent across environments. The addition of secondary QTL gave models that explained 39 to 80% of the genetic variance. The QTL were dispersed throughout the barley genome and some were detected in regions where QTL have been found in previous studies. Eight chromosome regions contained pleiotropic loci and/or linked clusters of loci that affected multiple traits. One region on chromosome 7 affected all traits except days to heading. This study was an intensive effort to evaluate QTL in a narrow-base population grown in a large set of environments. The results reveal the types and distributions of QTL effects manipulated by plant breeders and provide opportunities for future testing of marker-assisted selection

    Orbital Observations of Dust Lofted by Daytime Convective Turbulence

    Get PDF
    Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth
    corecore