15 research outputs found
Length and time scale divergences at the magnetization-reversal transition in the Ising model
The divergences of both the length and time scales, at the magnetization-
reversal transition in Ising model under a pulsed field, have been studied in
the linearized limit of the mean field theory. Both length and time scales are
shown to diverge at the transition point and it has been checked that the
nature of the time scale divergence agrees well with the result obtained from
the numerical solution of the mean field equation of motion. Similar growths in
length and time scales are also observed, as one approaches the transition
point, using Monte Carlo simulations. However, these are not of the same nature
as the mean field case. Nucleation theory provides a qualitative argument which
explains the nature of the time scale growth. To study the nature of growth of
the characteristic length scale, we have looked at the cluster size
distribution of the reversed spin domains and defined a pseudo-correlation
length which has been observed to grow at the phase boundary of the transition.Comment: 9 pages Latex, 3 postscript figure
Looking Beyond Inflationary Cosmology
In spite of the phenomenological successes of the inflationary universe
scenario, the current realizations of inflation making use of scalar fields
lead to serious conceptual problems which are reviewed in this lecture. String
theory may provide an avenue towards addressing these problems. One particular
approach to combining string theory and cosmology is String Gas Cosmology. The
basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia,
Vancouver, Canada, June 2 - 4, 2005) (references updated
Unconventional Cosmology
I review two cosmological paradigms which are alternative to the current
inflationary scenario. The first alternative is the "matter bounce", a
non-singular bouncing cosmology with a matter-dominated phase of contraction.
The second is an "emergent" scenario, which can be implemented in the context
of "string gas cosmology". I will compare these scenarios with the inflationary
one and demonstrate that all three lead to an approximately scale-invariant
spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer
School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept.
12 - 17 2012, to be publ. in the proceedings; these lecture notes form an
updated version of arXiv:1003.1745 and arXiv:1103.227
Self-Averaging, Distribution of Pseudo-Critical Temperatures and Finite Size Scaling in Critical Disordered Systems
The distributions of singular thermodynamic quantities in an ensemble
of quenched random samples of linear size at the critical point are
studied by Monte Carlo in two models. Our results confirm predictions of
Aharony and Harris based on Renormalization group considerations. For an
Ashkin-Teller model with strong but irrelevant bond randomness we find that the
relative squared width, , of is weakly self averaging. , where is the specific heat exponent and is the
correlation length exponent of the pure model fixed point governing the
transition. For the site dilute Ising model on a cubic lattice, known to be
governed by a random fixed point, we find that tends to a universal
constant independent of the amount of dilution (no self averaging). However
this constant is different for canonical and grand canonical disorder. We study
the distribution of the pseudo-critical temperatures of the ensemble
defined as the temperatures of the maximum susceptibility of each sample. We
find that its variance scales as and NOT as
R_\chi\sim 70R_\chi (T_c)\chiT_c(i,l)m_i(T_c,l)T_c(i,l)(T-T_c(i,l))/T_c$. This function is found to be universal and to behave
similarly to pure systems.Comment: 31 pages, 17 figures, submitted to Phys. Rev.
Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory
We adopt the general formalism, which was developed in Paper I
(arXiv:0708.1233) to analyze the evolution of a quantized time-dependent
oscillator, to address several questions in the context of quantum field theory
in time dependent external backgrounds. In particular, we study the question of
emergence of classicality in terms of the phase space evolution and its
relation to particle production, and clarify some conceptual issues. We
consider a quantized scalar field evolving in a constant electric field and in
FRW spacetimes which illustrate the two extreme cases of late time adiabatic
and highly non-adiabatic evolution. Using the time-dependent generalizations of
various quantities like particle number density, effective Lagrangian etc.
introduced in Paper I, we contrast the evolution in these two limits bringing
out key differences between the Schwinger effect and evolution in the de Sitter
background. Further, our examples suggest that the notion of classicality is
multifaceted and any one single criterion may not have universal applicability.
For example, the peaking of the phase space Wigner distribution on the
classical trajectory \emph{alone} does not imply transition to classical
behavior. An analysis of the behavior of the \emph{classicality parameter},
which was introduced in Paper I, leads to the conclusion that strong particle
production is necessary for the quantum state to become highly correlated in
phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the
first being arXiv:0708.1233 [gr-qc]; high resolution figures available from
the authors on reques
Scaling and self-averaging in the three-dimensional random-field Ising model
We investigate, by means of extensive Monte Carlo simulations, the magnetic
critical behavior of the three-dimensional bimodal random-field Ising model at
the strong disorder regime. We present results in favor of the two-exponent
scaling scenario, , where and are the
critical exponents describing the power-law decay of the connected and
disconnected correlation functions and we illustrate, using various finite-size
measures and properly defined noise to signal ratios, the strong violation of
self-averaging of the model in the ordered phase.Comment: 8 pages, 6 figures, to be published in Eur. Phys. J.
The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources
The role of fluctuation-dissipation dynamics in setting initial conditions for inflation
We study the problem of initial conditions for slow-roll inflation along a plateau-like scalar potential within the framework of fluctuation-dissipation dynamics. We consider, in particular, that inflation was preceded by a radiation-dominated epoch where the inflaton is coupled to light degrees of freedom and may reach a near-equilibrium state. We show that the homogeneous field component can be sufficiently localized at the origin to trigger a period of slow-roll if the interactions between the inflaton and the thermal degrees of freedom are sufficiently strong and argue that this does not necessarily spoil the flatness of the potential at the quantum level. We further conclude that the inflaton can still be held at the origin after its potential begins to dominate the energy balance, leading to a period of thermal inflation. This then suppresses the effects of nonlinear interactions between the homogeneous and inhomogeneous field modes that could prevent the former from entering a slow-roll regime. Finally, we discuss the possibility of an early period of chaotic inflation, at large field values, followed by a first stage of reheating and subsequently by a second inflationary epoch along the plateau about the origin. This scenario could prevent an early overclosure of the Universe, at the same time yielding a low tensor-to-scalar ratio in agreement with observations.publishe
Dark Energy Survey year 3 results: photometric data set for cosmology
We describe the Dark Energy Survey (DES) photometric data set assembled from the first three years of science operations to support DES Year 3 cosmologic analyses, and provide usage notes aimed at the broad astrophysics community. Y3 GOLD improves on previous releases from DES, Y1 GOLD, and Data Release 1 (DES DR1), presenting an expanded and curated data set that incorporates algorithmic developments in image detrending and processing, photometric calibration, and object classification. Y3 GOLD comprises nearly 5000 deg2 of grizY imaging in the south Galactic cap, including nearly 390 million objects, with depth reaching a signal-to-noise ratio ∼10 for extended objects up to iAB ∼ 23.0, and top-of-the-atmosphere photometric uniformity 98% and purity >99% for galaxies with 19 < iAB < 22.5. Additionally, it includes per-object quality information, and accompanying maps of the footprint coverage, masked regions, imaging depth, survey conditions, and astrophysical foregrounds that are used to select the cosmologic analysis samples