2,645 research outputs found
Catching NGC4051 in the low state with XMM-Newton
The Narrow Line Seyfert 1 galaxy NGC4051 shows unusual low flux states,
lasting several months, when the 2-10 keV X-ray spectrum becomes unusually hard
(photon index<1) while the spectrum at lower X-ray energies is dominated by a
large soft excess. A Chandra TOO of the low state has shown that the soft
excess and hard components are variable and well-correlated. The variability of
the hard component rules out an origin in a distant reflector. Here we present
results from a recent XMM-Newton TOO of NGC4051 in the low state, which allows
a much more detailed examination of the nature of the hard and soft spectral
components in the low state. We demonstrate that the spectral shape in the low
state is consistent with the extrapolation of the spectral pivoting observed at
higher fluxes. The XMM-Newton data also reveals the warm absorbing gas in
emission, as the drop in the primary continuum flux unmasks prominent emission
lines from a range of ion species.Comment: 4 pages, 4 figures. Proc. of the meeting: "The Restless High-Energy
Universe" (Amsterdam, The Netherlands), E.P.J. van den Heuvel, J.J.M. in 't
Zand, and R.A.M.J. Wijers Ed
On the survivability and detectability of terrestrial meteorites on the moon
Materials blasted into space from the surface of early Earth may preserve a unique record of our planet's early surface environment. Armstrong et al. (2002) pointed out that such materials, in the form of terrestrial meteorites, may exist on the Moon and be of considerable astrobiological interest if biomarkers from early Earth are preserved within them. Here, we report results obtained via the AUTODYN hydrocode to calculate the peak pressures within terrestrial meteorites on the lunar surface to assess their likelihood of surviving the impact. Our results confirm the order-of-magnitude estimates of Armstrong et al. (2002) that substantial survivability is to be expected, especially in the case of relatively low velocity (ca. 2.5 km/s) or oblique (≤45°) impacts, or both. We outline possible mechanisms for locating such materials on the Moon and conclude that searching for them would be a scientifically valuable activity for future lunar exploration
Integrability and Conformal Symmetry in the BCS model
The exactly solvable BCS Hamiltonian of superconductivity is considered from
several viewpoints: Richardson's ansatz, conformal field theory, integrable
inhomogenous vertex models and Chern-Simons theory.Comment: Latex with macros included, 12 pages, Proceedings of the NATO
Advanced Research Workshop on Statistical Field Theories, Como 18-23 June
2001. Editors: Andrea Cappelli and Giuseppe Mussardo. to be published by
Kluwer, Academic Publishers. Corrected some typos and further acknowledgment
Structural, item, and test generalizability of the psychopathology checklist - revised to offenders with intellectual disabilities
The Psychopathy Checklist–Revised (PCL-R) is the most widely used measure of psychopathy in forensic clinical practice, but the generalizability of the measure to offenders with intellectual disabilities (ID) has not been clearly established. This study examined the structural equivalence and scalar equivalence of the PCL-R in a sample of 185 male offenders with ID in forensic mental health settings, as compared with a sample of 1,212 male prisoners without ID. Three models of the PCL-R’s factor structure were evaluated with confirmatory factor analysis. The 3-factor hierarchical model of psychopathy was found to be a good fit to the ID PCL-R data, whereas neither the 4-factor model nor the traditional 2-factor model fitted. There were no cross-group differences in the factor structure, providing evidence of structural equivalence. However, item response theory analyses indicated metric differences in the ratings of psychopathy symptoms between the ID group and the comparison prisoner group. This finding has potential implications for the interpretation of PCL-R scores obtained with people with ID in forensic psychiatric settings
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams
Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB
First-principles Calculation of the Formation Energy in MgO-CaO Solid Solutions
The electronic structure and total energy were calculated for ordered and
disordered MgO-CaO solid solutions within the multiple scattering theory in
real space and the local density approximation. Based on the dependence of the
total energy on the unit cell volume the equilibrium lattice parameter and
formation energy were determined for different solution compositions. The
formation energy of the solid solutions is found to be positive that is in
agreement with the experimental phase diagram, which shows a miscibility gap.Comment: 11 pages, 3 figure
Ultrafast quasiparticle relaxation dynamics in normal metals and heavy fermion materials
We present a detailed theoretical study of the ultrafast quasiparticle
relaxation dynamics observed in normal metals and heavy fermion materials with
femtosecond time-resolved optical pump-probe spectroscopy. For normal metals, a
nonthermal electron distribution gives rise to a temperature (T) independent
electron-phonon relaxation time at low temperatures, in contrast to the
T^{-3}-divergent behavior predicted by the two-temperature model. For heavy
fermion compounds, we find that the blocking of electron-phonon scattering for
heavy electrons within the density-of-states peak near the Fermi energy is
crucial to explain the rapid increase of the electron-phonon relaxation time
below the Kondo temperature. We propose the hypothesis that the slower Fermi
velocity compared to the sound velocity provides a natural blocking mechanism
due to energy and momentum conservation laws.Comment: 10 pages, 11 figure
A remark on non-Abelian classical kinetic theory
It is known that non-Abelian classical kinetic theory reproduces the Hard
Thermal/Dense Loop (HTL/HDL) effective action of QCD, obtained after
integrating out the hardest momentum scales from the system, as well as the
first higher dimensional operator beyond the HTL/HDL level. We discuss here its
applicability at still higher orders, by comparing the exact classical
effective action obtained in the static limit, with the 1-loop quantum
effective potential. We remark that while correct types of operators arise, the
classical colour algebra reproduces correctly the prefactor of the 4-point
function only for matter in asymptotically high dimensional colour
representations.Comment: 6 page
One-Loop QCD Corrections to the Thermal Wilson Line Model
We calculate the time independent four-point function in high temperature (T)
QCD and obtain the leading momentum dependent terms. Furthermore, we relate
these derivative interactions to derivative terms in a recently proposed finite
T effective action based on the SU(3) Wilson Line and its trace, the Polyakov
Loop. By this procedure we thus obtain a perturbative matching at finite T
between QCD and the effective model. In particular, we calculate the leading
perturbative QCD-correction to the kinetic term for the Polyakov Loop.Comment: Minor changes, one reference adde
- …
