331 research outputs found

    Randall-Sundrum black holes and strange stars

    Get PDF
    It has recently been suggested that the existence of bare strange stars is incompatible with low scale gravity scenarios. It has been claimed that in such models, high energy neutrinos incident on the surface of a bare strange star would lead to catastrophic black hole growth. We point out that for the flat large extra dimensional case, the parts of parameter space which give rise to such growth are ruled out by other methods. We then go on to show in detail how black holes evolve in the the Randall-Sundrum two brane scenario where the extra dimensions are curved. We find that catastrophic black hole growth does not occur in this situation either. We also present some general expressions for the growth of five dimensional black holes in dense media.Comment: 16 pages, more numerics has lead to different path to same conclusion. Accepted in PR

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    Efeitos de giberelinas no desenvolvimento do algodoeiro (Gossypium hirsutum L. cv.'IAC-RM3')

    Get PDF
    Seedlings of cotton were treated 19 days after the sowing with gibberellins at concentrations of 2, 20 and 200 ppm and the check to verify The effect of the compound on the growth of the plant. The experiment was done under greenhouse conditions in 1974. The main proposal of this work is to study the variation of plant height, net assimilation rate, relative growth rate and the leaf area ratio with application of gibberellins. The growth regulator at concentrations of 2, 20 and 200 ppm increased plant height, respectively in 27, 48 and 65% when compared to the control. Application of gibberellins at concentrations of 2 and 20 ppm promotes increase in the net assimilation rate and in the leaf area ratio of cotton. The relative growth rate was superior in the plots that received gibberelins at concentrations of 2, 20 and 200 ppm. It was verified that gibberellins at 200 ppm has a tendency to promote reduction in the net assimilation rate and slight variation in the leaf area ratio in relation to check.Verificou-se o efeito de giberelinas, quando aplicada sob a forma de pulverização das plântulas, no desenvolvimento do algodoeiro cultivar 'IAC-RM3' em condições de casa-de-vegetação. Estudaram-se as concentrações de 0, 2, 20 e 200 ppm do regulador de crescimento; sendo que os tratamentos aumentaram a altura das plantas em 27, 48 e 65%, com relação ao controle. Aplicações de giberelinas nas dosagens de 2 e 20 ppm promoveram aumento na TAL e na RAF do algodoeiro. A TCR foi superior nas plantas tratadas com giberelinas. Verificou-se ainda que giberelinas a 200 ppm promove redução na TAL e variação mínima na RAF, com relação ao controle

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link

    SPACE: the spectroscopic all-sky cosmic explorer

    Get PDF
    We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015–2025 planning cycle. SPACE aims to produce the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts for more than half a billion galaxies at 0 < z < 2 down to AB ∼ 23 over 3π sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB ∼ 26 and at 2 < z < 10+. These goals are unreachable with ground-based observations due to the ≈500 times higher sky background (see e.g. Aldering, LBNL report number LBNL-51157, 2001). To achieve the main science objectives, SPACE will use a 1.5 m diameter Ritchey- Chretien telescope equipped with a set of arrays of Digital Micro-mirror Devices covering a total field of view of 0.4 deg2, and will perform large-multiplexing multi-object spectroscopy (e.g. ≈6000 targets per pointing) at a spectral resolution of R∼400 as well as diffraction-limited imaging with continuous coverage from 0.8 to 1.8 μm. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover. SPACE will also place high accuracy constraints on the dark energy equation of state parameter and its evolution by measuring the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distanceluminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, and high-z galaxy clusters. The datasets from the SPACE mission will represent a long lasting legacy for the whole astronomical community whose data will be mined for many years to come
    • …
    corecore