11 research outputs found

    The Variscan subduction inheritance in the Southern Alps Sub-Continental Lithospheric Mantle: clues from the Middle Triassic shoshonitic magmatism of the Dolomites (NE Italy)

    Get PDF
    Although often speculated, the link between the Middle Triassic shoshonitic magmatism at the NE margin of the Adria plate and the subduction-related metasomatism of the Southern Alps Sub-Continental Lithospheric Mantle (SCLM) has never been constrained. In this paper, a detailed geochemical and petrological characterization of the lavas, dykes and ultramafic cumulates belonging to the shoshonitic magmatic event that shaped the Dolomites (Southern Alps) was used to model the composition and evolution of the underlying SCLM in the time comprised between the Variscan subduction and the opening of the Alpine Tethys. Geochemical models and numerical simulations enabled us to define that 5–7% partial melting of an amphibole + phlogopite-bearing spinel lherzolite, similar to the Finero phlogopite peridotite, can account for the composition of the primitive Mid-Triassic SiO2-saturated to -undersaturated melts with shoshonitic affinity (87Sr/86Sri = 0.7032–0.7058; 143Nd/144Ndi = 0.51219–0.51235; Mg # ~ 70; ~1.1 wt% H2O). By taking into account the H2O content documented in mineral phases from the Finero phlogopite peridotite, it is suggested that the Mid-Triassic SCLM source was able to preserve a significant enrichment and volatile content (600–800 ppm H2O) for more than 50 Ma, i.e. since the slab-related metasomatism connected to the Variscan subduction. The partial melting of a Finero-like SCLM represents the exhaustion of the subduction-related signature in the Southern Alps lithosphere that predated the Late Triassic-Early Jurassic asthenospheric upwelling related to the opening of the Alpine Tethys

    IUGS-IUPAC recommendation on the half-lives of 147Sm and 146Sm

    No full text
    The IUPAC-IUGS joint Task Group “Isotopes in Geosciences” recommends a value of (106.25 ± 0.38) Ga for the half-life of 147Sm, and a corresponding decay constant λ147 = (6.524 ± 0.024) × 10-12 a-1, both with a coverage factor k = 2. For the extinct radionuclide 146Sm two very different half-lives are used in the scientific community (c. 68 and 103 Ma), to such a degree that no consensus value can be endorsed at present by the Task Group. Pending dedicated re-investigations it is recommended that papers using the 146Sm decay to quantify the cosmo/geological evolution of (extra)terrestrial samples perform a twin set of calculations using both proposed half-lives

    In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from Roberts Victor, Kaapvaal Craton

    Get PDF
    A subducted oceanic crustal origin for most eclogite xenoliths in kimberlites has long been a cornerstone of tectonic models for craton development. However, eclogite xenoliths often have protracted and complex histories involving multiple metasomatic events that could overprint some of the key geochemical indicators typically taken as evidence of a subducted origin (e.g., garnet ÎŽ18O-values and mineral 87Sr/86Sr compositions). To assess the potential for disturbance of oxygen isotopic compositions in mantle eclogites via diamond-forming and other possible metasomatic fluids, we have conducted a multi-technique in situ study of a diamondiferous eclogite xenolith from the Roberts Victor kimberlite, S. Africa. Using SIMS we provide the first texturally-controlled in situ measurements of ÎŽ18O-values in eclogitic garnet in close proximity to diamond. Garnet and clinopyroxene modal proportions are heterogeneous in the xenolith and garnet compositions vary from Mg# = 75.8–79.2; grossular proportions = 8.05–10.14 mol.%, and omphacitic pyroxene has Jd13–24 and Mg# = 86.6–90.0. Rare earth element patterns of minerals across the xenolith, including grains close to diamond, are typical LREE-depleted garnets and markedly LREE-enriched pyroxenes. These silicate minerals also record detectable intra- and inter-grain LREE abundance variations. Clinopyroxenes of the studied xenoliths show HFSE and Sr abundance variations that are decoupled from LREE contents and major-element variations. Mineralogical constraints and bulk-rock reconstructions indicate that the studied sample likely experienced selective incompatible element enrichment during small-volume (<<0.03 wt.%) infiltration of metasomatic fluid(s) potentially linked to ancient diamond evolution. Intra-grain major-element, LREE and HFSE variations in clinopyroxene resulted from late-stage metasomatism. Oxygen isotope compositions in garnet are decoupled from all major- and trace-element variations, with garnet ÎŽ18O-values being uniform across the xenolith in a wide variety of textural settings. Garnet ÎŽ18O-values of +6.5 ± 0.2 ‰ are higher than the mean (+5.19 ± 0.26 ‰) of the mantle garnet range (+4.8–5.5 ‰). Modelling of the buffering effect of mantle peridotite on CO2-rich and H2O-rich metasomatic fluids at temperatures within the diamond stability field indicates that the likelihood of a metasomatic fluid with exotic oxygen isotopic composition arriving at a mantle eclogite body with its isotopic composition unmodified, after percolative flow through dominantly peridotitic mantle at great depth, is very low. As we find no evidence of metasomatically induced garnet oxygen isotope variations in the studied diamondiferous eclogite xenolith we conclude that the most likely origin for the elevated garnet ÎŽ18O-values is via inheritance from a crustal protolith altered at relatively low temperatures. These results have broader relevance and support the hypothesis of a low-pressure protolith for mantle eclogite xenoliths, demonstrating the robust nature of garnet oxygen isotope compositions – even in diamond-bearing eclogites
    corecore