58 research outputs found

    Study of 9Be+12C elastic scattering at energies near the Coulomb barrier

    Full text link
    In this work, angular distribution measurements for the elastic channel were performed for the 9Be+12C reaction at the energies ELab=13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the double folding S\~ao Paulo potential. The experimental elastic scattering angular distributions were well described by the optical potential at forward angles for all measured energies. However, for the three highest energies, an enhancement was observed for intermediate and backward angles. This can be explained by the elastic transfer mechanism. Keywords: 9Be+12C, Elastic Scattering, S\~aoo Paulo Potential

    6Li direct breakup lifetimes

    Full text link
    alpha-d coincidence data were studied for the 6Li + 59Co reaction at E(lab) = 29.6 MeV. By using a kinematic analysis, it was possible to identify which process, leading to the same final state, has the major contribution for each of the selected angular regions. Contributions of the 6Li sequential and direct breakup to the incomplete fusion/transfer process were discussed by considering the lifetimes obtained by using a semiclassical approach, for both breakup components.Comment: 5 pages, 4 figures, Invited Talk (Parrallel Sessions) of A. Szanto de Toledo, prepared for the Proccedings of the 10th International Conference on Nucleus-Nucleus Collisions, August 16-21, 2009, Beijing, China; submitted to Nucl. Phys. A (Proceedings of NN2009

    Tick-borne pathogens infecting dogs from a highland swamp area

    Get PDF
    RESUMO Objetivou-se neste estudo relatar a frequência e a identidade de patógenos transmitidos por carrapatos em cães residentes de uma área caracterizada por brejo de alta altitude. Amostras sanguíneas (n=203) foram coletadas e molecularmente analisadas via PCR (Babesia spp., Hepatozoon spp., Anaplasma spp. e Ehrlichia spp.) e sequenciamento de DNA. De todas as amostras analisadas, 8,87% (18/203) foram positivas a algum patógeno transmitido por carrapato. Especificamente, 5,42% (11/203) e 3,45% (7/203) foram positivos a Anaplasma platys e Ehrlichia canis, respectivamente. Este estudo fornece, pela primeira vez, evidência científica de infecção de cães por esses patógenos nessa área de alta altitude e reforça o provável papel de R. sanguineus s.l. como vetor de A. platys, principalmente considerando.se que muitos animais positivos eram infestados por essa espécie de carrapato

    Neoctangium travassosi (Digenea: Microscaphidiidae) in sea turtles from South America

    Get PDF
    ABSTRACT Sea turtles are endangered animals that present cosmopolitan distribution. Anthropic actions have been considered important causes for the reduction of sea turtle population, but natural aspects such as parasitism may also contribute to their decline. This study aimed to report the occurrence of parasites in stranded dead sea turtles found in an area known as Potiguar Basin, northeastern Brazil, from 2010 to 2019. They were identified and classified according to the carapace length. At post-mortem analyses all organs were examined, parasites collected and morphologically identified. Ecological parasitic indexes as prevalence (P), mean intensity (MI) and mean abundance (MA) were calculated. A total of 80 Chelonia mydas and 5 Eretmochelys imbricata were assessed. Neoctangium travassosi was detected in both species presenting P = 20%, MI = 4.19 and MA = 0.84 for C. mydas and P = 60%, MI = 1.67 and MA = 1.0 for E. imbricata. This is the first report of N. travassosi parasitizing E. imbricata in South America. Finally, the retrieval of these parasites is a warning regarding the need for further studies to assess the impact of this parasitism on the health and conservation of sea turtles

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    J/ψ polarization in p+p collisions at s=200 GeV in STAR

    Get PDF
    AbstractWe report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2<pT<6 GeV/c in p+p collisions at s=200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models

    Measurement Of Charge Multiplicity Asymmetry Correlations In High-energy Nucleus-nucleus Collisions At Snn =200 Gev

    Get PDF
    A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at sNN=200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, Δ, between the like- and unlike-sign up/down-left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic v2obs), where Δ=[1.3±1.4(stat)-1.0+4.0(syst)]×10- 5+[3.2±0.2(stat)-0.3+0.4(syst)]×10-3v2obs for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed. © 2014 American Physical Society.894NRF-2012004024; National Research FoundationArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02.130Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.084Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.085Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Lee, T.D., (1973) Phys. Rev. D, 8, p. 1226. , 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9, p. 2291. , 0556-2821 10.1103/PhysRevD.9.2291Morley, P.D., Schmidt, I.A., (1985) Z. Phys. C, 26, p. 627. , ZPCFD2 0170-9739 10.1007/BF01551807Kharzeev, D., Pisarski, R.D., Tytgat, M.H.G., (1998) Phys. Rev. Lett., 81, p. 512. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.512Kharzeev, D., (2006) Phys. Lett. B, 633, p. 260. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.11.075Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys. A, 797, p. 67. , NUPABL 0375-9474 10.1016/j.nuclphysa.2007.10.001Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78, p. 074033. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.074033Kharzeev, D.E., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys. A, 803, p. 227. , NUPABL 0375-9474 10.1016/j.nuclphysa.2008.02.298Voloshin, S.A., (2004) Phys. Rev. C, 70, p. 057901. , PRVCAN 0556-2813 10.1103/PhysRevC.70.057901Abelev, B.I., (2009) Phys. Rev. Lett., 103, p. 251601. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.103.251601Abelev, B.I., (2010) Phys. Rev. C, 81, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.054908Abelev, B., (2013) Phys. Rev. Lett., 110, p. 012301. , (ALICE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.012301Wang, Q., (2012), http://drupal.star.bnl.gov/STAR/theses/phd/quanwang, Ph.D. thesis, Purdue University, arXiv:1205.4638Ackermann, K.H., (2003) Nucl. Instrum. Methods A, 499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Bieser, F.S., (2003) Nucl. Instrum. Methods A, 499, p. 766. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01974-5Adler, C., (2003) Nucl. Instrum. Methods A, 499, p. 433. , NIMAER 0168-9002 10.1016/j.nima.2003.08.112Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Anderson, M., (2003) Nucl. Instrum. Methods A, 499, p. 659. , NIMAER 0168-9002 10.1016/S0168-9002(02)01964-2Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Wang, G., (2005), http://drupal.star.bnl.gov/STAR/theses/ph-d/gang-wang, Ph.D. thesis, UCLAAdamczyk, L., (2012) Phys. Rev. Lett., 108, p. 202301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.108.202301Wang, F., (2010) Phys. Rev. C, 81, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064902Pratt, S., Schlichting, S., Gavin, S., (2011) Phys. Rev. C, 84, p. 024909. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024909Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.80.064912Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Petersen, H., Renk, T., Bass, S.A., (2011) Phys. Rev. C, 83, p. 014916. , PRVCAN 0556-2813 10.1103/PhysRevC.83.014916Adamczyk, L., (2013) Phys. Rev. C, 88, p. 064911. , (STAR Collaboration),. 10.1103/PhysRevC.88.064911Asakawa, M., Majumder, A., Müller, B., (2010) Phys. Rev. C, 81, p. 064912. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064912Bzdak, A., Koch, V., Liao, J., (2010) Phys. Rev. C, 81, pp. 031901R. , PRVCAN 0556-2813 10.1103/PhysRevC.81.031901Liao, J., Koch, V., Bzdak, A., (2010) Phys. Rev. C, 82, p. 054902. , PRVCAN 0556-2813 10.1103/PhysRevC.82.054902Ma, G.-L., Zhang, B., (2011) Phys. Lett. B, 700, p. 39. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.04.057Voloshin, S.A., (2010) Phys. Rev. Lett., 105, p. 172301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.17230
    corecore