2,186 research outputs found

    Analysis of Thermal-Protection Systems for Space-Vehicle Cryogenic-Propellant Tanks

    Get PDF
    Analytical techniques are presented that permit the calculation of heat-transfer rates with various thermal-protection systems for liquid-cryogenic-propellant tanks subjected to on-board, solar, and planetary heat fluxes. The thermal-protection systems considered include using closely spaced reflective surfaces (foils) and widely spaced reflective surfaces (shadow shields), insulation, arrangement of vehicle components, orientation with respect to radiant heating sources, and coatings for the control of solar absorptivity. The effectiveness of these thermal-protection systems in reducing propellant heating is shown both for ideal heat-transfer models and for a simplified hydrogen-oxygen terminal stage on a Mars mission. The proper orientation of a space-vehicle cryogenic tank with respect to the Sun is one of the more beneficial methods of reducing the heating effect of solar flux. Shadow shields can be extremely effective in reducing the propellant heating due to both solar and on-board fluxes. However, low-altitude planet orbits can result in high propellant heating rates due to planetary radiation reflected from the shields. For low-altitude orbits of more than a few days, foils appear to be desirable for all cryogenic-tank surfaces. Foils are also effective in reducing the on-board heating. A choice of shadow shields or foils cannot be made until a particular vehicle and a particular mission are chosen. The thermal conductivity of insulation materials would have to be lower by about two orders of magnitude with no increase in density before insulation could compete with reflective surfaces for use in long-duration thermal protection of cryogenic tanks in space. To demonstrate the application of the methods devised, thermal-protection systems are developed for a hydrogen-oxygen terminal stage for typical Mars missions

    AMS measurements of cosmogenic and supernova-ejected radionuclides in deep-sea sediment cores

    Full text link
    Samples of two deep-sea sediment cores from the Indian Ocean are analyzed with accelerator mass spectrometry (AMS) to search for traces of recent supernova activity around 2 Myr ago. Here, long-lived radionuclides, which are synthesized in massive stars and ejected in supernova explosions, namely 26Al, 53Mn and 60Fe, are extracted from the sediment samples. The cosmogenic isotope 10Be, which is mainly produced in the Earths atmosphere, is analyzed for dating purposes of the marine sediment cores. The first AMS measurement results for 10Be and 26Al are presented, which represent for the first time a detailed study in the time period of 1.7-3.1 Myr with high time resolution. Our first results do not support a significant extraterrestrial signal of 26Al above terrestrial background. However, there is evidence that, like 10Be, 26Al might be a valuable isotope for dating of deep-sea sediment cores for the past few million years.Comment: 5 pages, 2 figures, Proceedings of the Heavy Ion Accelerator Symposium on Fundamental and Applied Science, 2013, will be published by the EPJ Web of conference

    Energy Distribution of a Charged Regular Black Hole

    Get PDF
    We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and M{\o}ller.Comment: 6 pages, no figure

    On-the-fly memory compression for multibody algorithms.

    Get PDF
    Memory and bandwidth demands challenge developers of particle-based codes that have to scale on new architectures, as the growth of concurrency outperforms improvements in memory access facilities, as the memory per core tends to stagnate, and as communication networks cannot increase bandwidth arbitrary. We propose to analyse each particle of such a code to find out whether a hierarchical data representation storing data with reduced precision caps the memory demands without exceeding given error bounds. For admissible candidates, we perform this compression and thus reduce the pressure on the memory subsystem, lower the total memory footprint and reduce the data to be exchanged via MPI. Notably, our analysis and transformation changes the data compression dynamically, i.e. the choice of data format follows the solution characteristics, and it does not require us to alter the core simulation code

    Genotoxicity of nitroso compounds and sodium dichromate in a model combining organ cultures of human nasal epithelia and the comet assay

    Get PDF
    Genotoxic effects of xenobiotics are a possible step in tumor initiation in the mucosa of the upper aerodigestive tract. Using the comet assay, detecting genotoxicity in human tissue has been restricted to single incubations in vitro, but in vivo most xenobiotics harm their target in a repetitive or chronic manner. Therefore, we propose a model, which provides repetitive incubations in human upper aerodigestive tract mucosa cultures. Samples of human inferior nasal turbinate mucosa (n = 25) were cultured according to a modified version of a technique originally described by Steinsvag. On day 1 fresh samples and on days 7, 9 and 11 organ cultures were incubated with N-nitrosodiethylamine (NDEA), sodium dichromate (Na2Cr2O7) and N'-methyl-N-nitro-N-nitrosoguanidine(MNNG). Mucosa samples and organ cultures, respectively, underwent a modified comet assay on days 1, 7 and 11. Genotoxicity could be shown for NDEA, Na2Cr2O7 and MNNG on days 1, 7 and 11. Duration of tissue culture and repetitive incubations did not significantly influence the results for NDEA. Nevertheless, Na2Cr2O7 and MNNG caused higher genotoxic effects on cultures subjected to the comet assay on day 11. This model may help to assess genotoxic hazards posed by environ mental pollutants that have a cumulative character in repetitive or chronic exposure in vivo. Copyright (C) 2001 S. Karger AG, Basel

    Analysis of Thermal-Protection Systems for Space-Vehicle Cryogenic-Propellant Tanks

    Get PDF
    Analytical techniques are presented that permit the calculation of heat-transfer rates with various thermal-protection systems for liquid-cryogenic-propellant tanks subjected to on-board, solar, and planetary heat fluxes . The effectiveness of these protection systems in reducing propellant heating is shown both for ideal heat-transfer models and for a simplified hydrogen-oxygen terminal stage used for typical Mars missions

    The Search for Supernova-produced Radionuclides in Terrestrial Deep-sea Archives

    Full text link
    An enhanced concentration of 60Fe was found in a deep ocean's crust in 2004 in a layer corresponding to an age of ~2 Myr. The confirmation of this signal in terrestrial archives as supernova-induced and detection of other supernova-produced radionuclides is of great interest. We have identified two suitable marine sediment cores from the South Australian Basin and estimated the intensity of a possible signal of the supernova-produced radionuclides 26Al, 53Mn, 60Fe and the pure r-process element 244Pu in these cores. A finding of these radionuclides in a sediment core might allow to improve the time resolution of the signal and thus to link the signal to a supernova event in the solar vicinity ~2 Myr ago. Furthermore, it gives an insight on nucleosynthesis scenarios in massive stars, the condensation into dust grains and transport mechanisms from the supernova shell into the solar system

    Settling the half-life of ⁶⁰Fe: fundamental for a versatile astrophysical chronometer

    No full text
    In order to resolve a recent discrepancy in the half-life of ⁶⁰Fe, we performed an independent measurement with a new method that determines the ⁶⁰Fe content of a material relative to Fe55 (t1/2=2.744yr) with accelerator mass spectrometry. Our result of (2.50±0.12)×10⁶yr clearly favors the recently reported value (2.62±0.04)×10⁶yr, and rules out the older result of (1.49±0.27)×10⁶yr. The present weighted mean half-life value of (2.60±0.05)×10⁶yr substantially improves the reliability as an important chronometer for astrophysical applications in the million-year time range. This includes its use as a sensitive probe for studying recent chemical evolution of our Galaxy, the formation of the early Solar System, nucleosynthesis processes in massive stars, and as an indicator of a recent nearby supernova.Part of this work was funded by the Austrian Science Fund (FWF) Projects No. AP20434 and AI00428 (FWF and CoDustMas, Eurogenesis via ESF)

    Hidden Consequence of Active Local Lorentz Invariance

    Full text link
    In this paper we investigate a hidden consequence of the hypothesis that Lagrangians and field equations must be invariant under active local Lorentz transformations. We show that this hypothesis implies in an equivalence between spacetime structures with several curvature and torsion possibilities.Comment: Some misprints appearing in the published version have been correcte
    • 

    corecore