4,371 research outputs found

    Research opportunities on immunocompetence in space

    Get PDF
    The most significant of the available data on the effects of space flight on immunocompetences and the potential operational and clinical significance of reported changes are as follows: (1) reduced postflight blastogenic response of peripheral lymphocytes from space crew members; (2) postflight neutrophilia persisting up to 7 days; (3) gingival inflammation of the Skylab astronauts; (4) postflight lymphocytopenia, eosinopenia, and monocytopenia; (5) modifications and shifts in the microflora of space crews and spacecraft; and (6) microbial contamination of cabin air and drinking water. These responses and data disclose numerous gaps in the knowledge that is essential for an adequate understanding of space-related changes in immunocompetence

    Transport of sulfur dioxide from the Asian Pacific Rim to the North Pacific troposphere

    Get PDF
    The NASA Pacific Exploratory Mission over the Western Pacific Ocean (PEM-West B) field experiment provided an opportunity to study sulfur dioxide (SO2) in the troposphere over the western Pacific Ocean from the tropics to 60°N during February–March 1993. The large suite of chemical and physical measurements yielded a complex matrix in which to understand the distribution of sulfur dioxide over the western Pacific region. In contrast to the late summer period of Pacific Exploratory Mission-West A (PEM-West A) (1991) over this same area, SO2showed little increase with altitude, and concentrations were much lower in the free troposphere than during the PEM-West B period. Volcanic impacts on the upper troposphere were again found as a result of deep convection in the tropics. Extensive emission of SO2 from the Pacific Rim land masses were primarily observed in the lower well-mixed part of the boundary layer but also in the upper part of the boundary layer. Analyses of the SO2 data with aerosol sulfate, beryllium-7, and lead-210 indicated that SO2 contributed to half or more of the observed total oxidized sulfur (SO2 plus aerosol sulfate) in free tropospheric air. The combined data set suggests that SO2 above 8.5 km is transported from the surface but with aerosol sulfate being removed more effectively than SO2. Cloud processing and rain appeared to be responsible for lower SO2 levels between 3 and 8.5 km than above or below this region

    Air-snow exchange of HNO3 and NOy at Summit, Greenland

    Get PDF
    Ice core records of NO3− deposition to polar glaciers could provide unrivaled information on past photochemical status and N cycling dynamics of the troposphere, if the ice core records could be inverted to yield concentrations of reactive N oxides in the atmosphere at past times. Limited previous investigations at Summit, Greenland, have suggested that this inversion may be difficult, since the levels of HNO3 and aerosol-associated NO3− over the snow are very low in comparison with those of NO3− in the snow. In addition, it appears that some fraction of the NO3− in snow may be reemitted to the atmosphere after deposition. Here we report on extensive measurements of HNO3, including vertical gradients between 1.5 and 7 m above the snow, made during the summers of 1994 and 1995 at Summit. These HNO3 data are compared with NO3− concentrations in surface snow and the first measurements of the concentrations and fluxes of total reactive nitrogen oxides (Ny) on a polar glacier. Our results confirm that HNO3 concentrations are quite low (mean 0.5 nmol m−3) during the summer, while NO3− is the dominant ion in snow. Daytime peaks in HNO3− appear to be due at least partly to emissions from the snow, an assertion supported by gradients indicating a surface source for HNO3− on many days. Observed short-term increases in NO3− inventory in the snow can be too large to be readily attributed to deposition of HNO3− suggesting that deposition of one or more other N oxides must be considered. We found that the apparent fluxes of HNO3 and NOy were in opposite directions during about half the intervals when both were measured, with more cases of HNO3 leaving the snow, against an NOy flux into the snow, than the reverse. The concentrations of NOy are generally about 2 orders of magnitude greater than those of HNO3; hence deposition of only a small, non-HNO3, fraction of this pool could dominate NO3− in snow, if the depositing species converted to NO3−, either in the snowpack or upon melting for analysis

    A causal look into the quantum Talbot effect

    Get PDF
    A well-known phenomenon in both optics and quantum mechanics is the so-called Talbot effect. This near field interference effect arises when infinitely periodic diffracting structures or gratings are illuminated by highly coherent light or particle beams. Typical diffraction patterns known as quantum carpets are then observed. Here the authors provide an insightful picture of this nonlocal phenomenon as well as its classical limit in terms of Bohmian mechanics, also showing the causal reasons and conditions that explain its appearance. As an illustration, theoretical results obtained from diffraction of thermal He atoms by both N-slit arrays and weak corrugated surfaces are analyzed and discussed. Moreover, the authors also explain in terms of what they call the Talbot-Beeby effect how realistic interaction potentials induce shifts and distortions in the corresponding quantum carpets.Comment: 12 pages, 6 figure

    A mathematical model of a single main rotor helicopter for piloted simulation

    Get PDF
    A mathematical model, suitable for piloted simulation of the flying qualities of helicopters, is a nonlinear, total force and moment model of a single main rotor helicopter. The model has ten degrees of freedom: six rigid body, three rotor flapping, and the rotor rotational degrees of freedom. The rotor model assumes rigid blades with rotor forces and moments radially integrated and summed about the azimuth. The fuselage aerodynamic model uses a detailed representation over a nominal angle of attack and sideslip range of + or - 15 deg., as well as a simplified curve fit at large angles of attack or sideslip. Stabilizing surface aerodynamics are modeled with a lift curve slope between stall limits and a general curve fit for large angles of attack. A generalized stability and control augmentation system is described. Additional computer subroutines provide options for a simplified engine/governor model, atmospheric turbulence, and a linearized six degree of freedom dynamic model for stability and control analysis

    Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime

    Get PDF
    We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3–12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases \u3c100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15°N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25°N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r2 = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r2 = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO3 mixing ratios were several parts per billion by volume (ppbv), yielding relationships with O3 and N2O consistent with those previously reported for NOy

    A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada

    Get PDF
    During early July 2002, wildfires burned ∼1 × 106 ha of forest in Quebec, Canada. The resultant smoke plume was seen in satellite images blanketing the U.S. east coast. Concurrently, extremely high CO mixing ratios were observed at the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) network sites in New Hampshire and at the Harvard Forest Environmental Measurement Site (HFEMS) in Massachusetts. The CO enhancements were on the order of 525–1025 ppbv above low mixing ratio conditions on surrounding days. A biomass burning source for the event was confirmed by concomitant enhancements in aerosol K+, NH4+, NO3−, and C2O42− mixing ratios at the AIRMAP sites. Additional data for aerosol K, organic carbon, and elemental carbon from the Interagency Monitoring of Protected Visual Environments network and CO data from Environmental Protection Agency sites indicated that the smoke plume impacted much of the U.S. east coast, from Maine to Virginia. CO mixing ratios and K concentrations at stations with 10-year or longer records suggested that this was the largest biomass burning plume to impact the U.S. east coast in over a decade. Furthermore, CO mixing ratios and aerosol particles with diameters 2.5) mass and scattering coefficients from the AIRMAP network and HFEMS indicated that this event was comparable to the large anthropogenic combustion and haze events which intermittently impact rural New England. The degree of enhancement of O3, NOy, NO3−, NH4+, and SO42− in the biomass plume showed significant variation with elevation and latitude that is attributed to variations in transport and surface depositional processes

    Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer 210Pb

    Get PDF
    During the NASA Global Troposphere Experiment Pacific Exploratory Mission-Tropics (PEM-Tropics) airborne sampling campaign we found unexpectedly high concentrations of aerosol-associated 210Pb throughout the free troposphere over the South Pacific. Because of the remoteness of the study region, we expected specific activities to be generally less than 35 μBq m−3 but found an average in the free troposphere of 107 μBq m−3. This average was elevated by a large number of very active (up to 405 μBq m−3) samples that were associated with biomass burning plumes encountered on nearly every PEM-Tropics flight in the southern hemisphere. We use a simple aging and dilution model, which assumes that 222Rn and primary combustion products are pumped into the free troposphere in wet convective systems over fire regions (most likely in Africa), to explain the elevated 210Pb activities. This model reproduces the observed 210Pb activities very well, and predicts the ratios of four hydrocarbon species (emitted by combustion) to CO to better than 20% in most cases. Plume ages calculated by the model depend strongly on the assumed 222Rn activities in the initial plume, but using values plausible for continental boundary layer air yields ages that are consistent with travel times from Africa to the South Pacific calculated with a back trajectory model. The model also shows that despite being easily recognized through the large enhancements of biomass burning tracers, these plumes must have entrained large fractions of the surrounding ambient air during transport

    Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data

    Get PDF
    Speciated atmospheric mercury observations collected over the period from 2008 to 2010 at the Environmental Protection Agency and National Atmospheric Deposition Program Atmospheric Mercury Network sites (AMNet) were analyzed for its spatial, seasonal, and diurnal characteristics across the US. Median values of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particulate bound mercury (PBM) at 11 different AMNet sites ranged from 148–226 ppqv (1.32–2.02 ng m<sup>−3</sup>), 0.05–1.4 ppqv (0.47–12.4 pg m<sup>−3</sup>) and 0.18–1.5 ppqv (1.61–13.7 pg m<sup>−3</sup>), respectively. Common characteristics of these sites were the similar median levels of GEM as well as its seasonality, with the highest mixing ratios occurring in winter and spring and the lowest in fall. However, discernible differences in monthly average GEM were as large as 30 ppqv, which may be caused by sporadic influence from local emission sources. The largest diurnal variation amplitude of GEM occurred in the summer. Seven rural sites displayed similar GEM summer diurnal patterns, in that the lowest levels appeared in the early morning, and then the GEM mixing ratio increased after sunrise and reached its maxima at noon or in the early afternoon. Unlike GEM, GOM exhibited higher mixing ratios in spring and summer. The largest diurnal variation amplitude of GOM occurred in spring for most AMNet sites. The GOM diurnal minima appeared before sunrise and maxima appeared in the afternoon. The increased GOM mixing ratio in the afternoon indicated a photochemically driven oxidation of GEM resulting in GOM formation. PBM exhibited diurnal fluctuations in summertime. The summertime PBM diurnal pattern displayed daily maxima in the early afternoon and lower mixing ratios at night, implying photochemical production of PBM in summer

    Bromoform and dibromomethane measurements in the seacoast region of New Hampshire, 2002–2004

    Get PDF
    Atmospheric measurements of bromoform (CHBr3) and dibromomethane (CH2Br2) were conducted at two sites, Thompson Farm (TF) in Durham, New Hampshire (summer 2002–2004), and Appledore Island (AI), Maine (summer 2004). Elevated mixing ratios of CHBr3 were frequently observed at both sites, with maxima of 37.9 parts per trillion by volume (pptv) and 47.4 pptv for TF and AI, respectively. Average mixing ratios of CHBr3 and CH2Br2 at TF for all three summers ranged from 5.3–6.3 and 1.3–2.3 pptv, respectively. The average mixing ratios of both gases were higher at AI during 2004, consistent with AI\u27s proximity to sources of these bromocarbons. Strong negative vertical gradients in the atmosphere corroborated local sources of these gases at the surface. At AI, CHBr3 and CH2Br2 mixing ratios increased with wind speed via sea‐to‐air transfer from supersaturated coastal waters. Large enhancements of CHBr3 and CH2Br2 were observed at both sites from 10 to 14 August 2004, coinciding with the passage of Tropical Storm Bonnie. During this period, fluxes of CHBr3 and CH2Br2 were 52.4 ± 21.0 and 9.1 ± 3.1 nmol m−2 h−1, respectively. The average fluxes of CHBr3 and CH2Br2 during nonevent periods were 18.9 ± 12.3 and 2.6 ± 1.9 nmol m−2 h−1, respectively. Additionally, CHBr3 and CH2Br2 were used as marine tracers in case studies to (1) evaluate the impact of tropical storms on emissions and distributions of marine‐derived gases in the coastal region and (2) characterize the transport of air masses during pollution episodes in the northeastern United States
    corecore