320 research outputs found

    Estimating the opportunity costs of bed-days.

    Get PDF
    Opportunity costs of bed-days are fundamental to understanding the value of healthcare systems. They greatly influence burden of disease estimations and economic evaluations involving stays in healthcare facilities. However, different estimation techniques employ assumptions that differ crucially in whether to consider the value of the second-best alternative use forgone, of any available alternative use, or the value of the actually chosen alternative. Informed by economic theory, this paper provides a taxonomic framework of methodologies for estimating the opportunity costs of resources. This taxonomy is then applied to bed-days by classifying existing approaches accordingly. We highlight differences in valuation between approaches and the perspective adopted, and we use our framework to appraise the assumptions and biases underlying the standard approaches that have been widely adopted mostly unquestioned in the past, such as the conventional use of reference costs and administrative accounting data. Drawing on these findings, we present a novel approach for estimating the opportunity costs of bed-days in terms of health forgone for the second-best patient, but expressed monetarily. This alternative approach effectively re-connects to the concept of choice and explicitly considers net benefits. It is broadly applicable across settings and for other resources besides bed-days

    Nosocomial transmission of C. difficile in English hospitals from patients with symptomatic infection.

    Get PDF
    BACKGROUND: Recent evidence suggests that less than one-quarter of patients with symptomatic nosocomial Clostridium difficile infections (CDI) are linked to other in-patients. However, this evidence was limited to one geographic area. We aimed to investigate the level of symptomatic CDI transmission in hospitals located across England from 2008 to 2012. METHODS: A generalized additive mixed-effects Poisson model was fitted to English hospital-surveillance data. After adjusting for seasonal fluctuations and between-hospital variation in reported CDI over time, possible clustering (transmission between symptomatic in-patients) of CDI cases was identified. We hypothesised that a temporal proximity would be reflected in the degree of correlation between in-hospital CDI cases per week. This correlation was modelled through a latent autoregressive structure of order 1 (AR(1)). FINDINGS: Forty-six hospitals (33 general, seven specialist, and six teaching hospitals) located in all English regions met our criteria. In total, 12,717 CDI cases were identified; seventy-five per cent of these occurred >48 hours after admission. There were slight increases in reports during winter months. We found a low, but statistically significant, correlation between successive weekly CDI case incidences (phi = 0.029, 95%CI: 0.009-0.049). This correlation was five times stronger in a subgroup analysis restricted to teaching hospitals (phi = 0.104, 95%CI: 0.048-0.159). CONCLUSIONS: The results suggest that symptomatic patient-to-patient transmission has been a source of CDI-acquisition in English hospitals in recent years, and that this might be a more important transmission route in teaching hospitals. Nonetheless, the weak correlation indicates that, in line with recent evidence, symptomatic cases might not be the primary source of nosocomial CDI in England

    Galaxy And Mass Assembly (GAMA) : refining the local galaxy merger rate using morphological information

    Get PDF
    KRVS acknowledges the Science and Technology Facilities Council (STFC) for providing funding for this project, as well as the Government of Catalonia for a research travel grant (ref. 2010 BE-00268) to begin this project at the University of Nottingham. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the European Research Council, through receipt of a Starting Grant (DEGAS-259586).We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass-dependent merger fraction and merger rate using galaxy pairs and the CAS (concentration, asymmetry, and smoothness) structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M* = 108 M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, whereas the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass-dependent major merger fraction is fairly constant at ∼1.3–2 per cent within 109.5 < M* < 1011.5 M⊙, and increases to ∼4 per cent at lower masses. When the observability time-scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total comoving volume major merger rate over the range 108.0 < M* < 1011.5 M⊙ is (1.2 ± 0.5) × 10−3 h370 Mpc−3 Gyr−1.Publisher PDFPeer reviewe

    Galaxy And Mass Assembly (GAMA) : stellar mass functions by Hubble type

    Get PDF
    This work was supported by the Austrian Science Foundation FWF under grant P23946. AWG was supported under the Australian Research Council's funding scheme FT110100263.We present an estimate of the galaxy stellar mass function and its division by morphological type in the local (0.025 < z < 0.06) Universe. Adopting robust morphological classifications as previously presented (Kelvin et al.) for a sample of 3727 galaxies taken from the Galaxy And Mass Assembly survey, we define a local volume and stellar mass limited sub-sample of 2711 galaxies to a lower stellar mass limit of M = 109.0 MΘ. We confirm that the galaxy stellar mass function is well described by a double-Schechter function given by Μ* = 1010.64 MΘ, α1 = 0.43, φ1* = 4.18 dex-1 Mpc-3, α2 = −1.50 and φ2* = 0.74 dex-1 Mpc-3. The constituent morphological-type stellar mass functions are well sampled above our lower stellar mass limit, excepting the faint little blue spheroid population of galaxies. We find approximately 71-4+3 per cent of the stellar mass in the local Universe is found within spheroid-dominated galaxies; ellipticals and S0-Sas. The remaining 29-3+4 per cent falls predominantly within late-type disc-dominated systems, Sab-Scds and Sd-Irrs. Adopting reasonable bulge-to-total ratios implies that approximately half the stellar mass today resides in spheroidal structures, and half in disc structures. Within this local sample, we find approximate stellar mass proportions for E : S0-Sa : Sab-Scd : Sd-Irr of 34 : 37 : 24 :5.Publisher PDFPeer reviewe

    GAMA: towards a physical understanding of galaxy formation

    Full text link
    The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2, and to trace the distribution of luminous galaxies out to z~0.5. The principal science aim is to test the standard hierarchical structure formation paradigm of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from galaxy group velocity dispersions); (2) baryonic processes, such as star formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass Functions); and (3) the evolution of galaxy merger rates (via galaxy close pairs and galaxy asymmetries). Additionally, GAMA will form the central part of a new galaxy database, which aims to contain 275,000 galaxies with multi-wavelength coverage from coordinated observations with the latest international ground- and space-based facilities: GALEX, VST, VISTA, WISE, HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth (over 2 magnitudes), doubled spatial resolution (0.7"), and significantly extended wavelength coverage (UV through Far-IR to radio) over the main SDSS spectroscopic survey for five regions, each of around 50 deg^2. This database will permit detailed investigations of the structural, chemical, and dynamical properties of all galaxy types, across all environments, and over a 5 billion year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy & Geophysics, ref: Astron.Geophys. 50 (2009) 5.1

    Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 m to 1 mm

    Get PDF
    We use the Galaxy And Mass Assembly survey (GAMA) I data set combined with GALEX, Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS) imaging to construct the low-redshift (z < 0.1) galaxy luminosity functions in FUV, NUV, ugriz and YJHK bands from within a single well-constrained volume of 3.4 × 105 (Mpc h−1)3. The derived luminosity distributions are normalized to the SDSS data release 7 (DR7) main survey to reduce the estimated cosmic variance to the 5 per cent level. The data are used to construct the cosmic spectral energy distribution (CSED) from 0.1 to 2.1 μm free from any wavelength-dependent cosmic variance for both the elliptical and non-elliptical populations. The two populations exhibit dramatically different CSEDs as expected for a predominantly old and young population, respectively. Using the Driver et al. prescription for the azimuthally averaged photon escape fraction, the non-ellipticals are corrected for the impact of dust attenuation and the combined CSED constructed. The final results show that the Universe is currently generating (1.8 ± 0.3) × 1035 h W Mpc−3 of which (1.2 ± 0.1) × 1035 h W Mpc−3 is directly released into the inter-galactic medium and (0.6 ± 0.1) × 1035 h W Mpc−3 is reprocessed and reradiated by dust in the far-IR. Using the GAMA data and our dust model we predict the mid- and far-IR emission which agrees remarkably well with available data. We therefore provide a robust description of the pre- and post-dust attenuated energy output of the nearby Universe from 0.1 μm to 0.6 mm. The largest uncertainty in this measurement lies in the mid- and far-IR bands stemming from the dust attenuation correction and its currently poorly constrained dependence on environment, stellar mass and morphology

    Galaxy And Mass Assembly (GAMA): stellar mass growth of spiral galaxies in the cosmic web

    Get PDF
    We look for correlated changes in stellar mass and star formation rate (SFR) along filaments in the cosmic web by examining the stellar masses and UV-derived SFRs of 1799 ungrouped and unpaired spiral galaxies that reside in filaments. We devise multiple distance metrics to characterize the complex geometry of filaments, and find that galaxies closer to the cylindrical centre of a filament have higher stellar masses than their counterparts near the periphery of filaments, on the edges of voids. In addition, these peripheral spiral galaxies have higher SFRs at a given mass. Complementing our sample of filament spiral galaxies with spiral galaxies in tendrils and voids, we find that the average SFR of these objects in different large-scale environments are similar to each other with the primary discriminant in SFR being stellar mass, in line with previous works. However, the distributions of SFRs are found to vary with large-scale environment. Our results thus suggest a model in which in addition to stellar mass as the primary discriminant, the large-scale environment is imprinted in the SFR as a second-order effect. Furthermore, our detailed results for filament galaxies suggest a model in which gas accretion from voids on to filaments is primarily in an orthogonal direction. Overall, we find our results to be in line with theoretical expectations of the thermodynamic properties of the intergalactic medium in different large-scale environments

    Galaxy And Mass Assembly (GAMA) blended spectra catalogue: strong galaxy-galaxy lens and occulting galaxy pair candidates

    Get PDF
    We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum fall into two principal classes: they are either strong lenses, a passive galaxy lensing an emission-line galaxy; or occulting galaxies, serendipitous overlaps of two galaxies, of any type. Blended spectra can thus be used to reliably identify strong lenses for follow-up observations (high-resolution imaging) and occulting pairs, especially those that are a late-type partly obscuring an early-type galaxy which are of interest for the study of dust content of spiral and irregular galaxies. The GAMA survey setup and its AUTOZ automated redshift determination were used to identify candidate blended galaxy spectra from the cross-correlation peaks. We identify 280 blended spectra with a minimum velocity separation of 600 km s−1, of which 104 are lens pair candidates, 71 emission-line-passive pairs, 78 are pairs of emission-line galaxies and 27 are pairs of galaxies with passive spectra. We have visually inspected the candidates in the Sloan Digital Sky Survey (SDSS) and Kilo Degree Survey (KiDS) images. Many blended objects are ellipticals with blue fuzz (Ef in our classification). These latter ‘Ef’ classifications are candidates for possible strong lenses, massive ellipticals with an emission-line galaxy in one or more lensed images. The GAMA lens and occulting galaxy candidate samples are similar in size to those identified in the entire SDSS. This blended spectrum sample stands as a testament of the power of this highly complete, second-largest spectroscopic survey in existence and offers the possibility to expand e.g. strong gravitational lens surveys

    Non‐pharmacological interventions for challenging behaviours of adults with intellectual disabilities: A meta‐analysis

    Get PDF
    Background  Non-pharmacological interventions are recommended for the treatment of challenging behaviours in individuals with intellectual disabilities by clinical guidelines. However, evidence for their effectiveness is ambiguous. The aim of the current meta-analysis is to update the existing evidence, to investigate long-term outcome, and to examine whether intervention type, delivery mode, and study design were associated with differences in effectiveness. Method An electronic search was conducted using the databases Medline, Eric, PsychINFO and Cinahl. Studies with experimental or quasi-experimental designs were included. We performed an overall random-effect meta-analysis and subgroup analyses. Results We found a significant moderate overall effect of non-pharmacological interventions on challenging behaviours (d = 0.573, 95% CI [0.352-0.795]), and this effect appears to be longlasting. Interventions combining mindfulness and behavioural techniques showed to be more effective than other interventions. However, this result should be interpreted with care due to possible overestimation of the subgroup analysis. No differences in effectiveness were found across assessment times, delivery modes or study designs. Conclusions Non-pharmacological interventions appear to be moderately effective on the short and long term in reducing challenging behaviours in adults with intellectual disabilities
    corecore