236 research outputs found
First Kepler results on compact pulsators II: KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode
We present the discovery of nonradial pulsations in a hot subdwarf B star
based on 30.5 days of nearly continuous time-series photometry using the
\emph{Kepler} spacecraft. KIC 010139564 is found to be a short-period pulsator
of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes
whose periods range from 130 to 190 seconds. It also shows one periodicity at a
period of 3165 seconds. If this periodicity is a high order g-mode, then this
star may be the hottest member of the hybrid DW Lyn stars. In addition to the
resolved pulsation frequencies, additional periodic variations in the light
curve suggest that a significant number of additional pulsation frequencies may
be present. The long duration of the run, the extremely high duty cycle, and
the well-behaved noise properties allow us to explore the stability of the
periodic variations, and to place strong constraints on how many of them are
independent stellar oscillation modes. We find that most of the identified
periodicities are indeed stable in phase and amplitude, suggesting a rotation
period of 2-3 weeks for this star, but further observations are needed to
confirm this suspicion.Comment: 10 pages, accepted for publication in MNRA
Normal Global Longitudinal Strain: An Individual Patient Meta-Analysis
peer reviewed[No abstract available
Towards an optimal therapy strategy for myogenous TMD, physiotherapy compared with occlusal splint therapy in an RCT with therapy-and-patient-specific treatment durations
Appendix. Threshold of signs and symptoms. Post-hoc power analysis on measures of effectiveness. Two-way ANOVA statistical analysis for pain intensity. Rules for progressing and ending splint therapy. Rules for progressing and ending physiotherapy. A stepped-care model including two possible therapies. (PDF 86Â kb
The radius and mass of the close solar twin 18 Sco derived from asteroseismology and interferometry
The growing interest in solar twins is motivated by the possibility of
comparing them directly to the Sun. To carry on this kind of analysis, we need
to know their physical characteristics with precision. Our first objective is
to use asteroseismology and interferometry on the brightest of them: 18 Sco. We
observed the star during 12 nights with HARPS for seismology and used the PAVO
beam-combiner at CHARA for interferometry. An average large frequency
separation Hz and angular and linear radiuses of mas and R were estimated. We used these
values to derive the mass of the star, M.Comment: 5 pages, 5 figure
Estimating the p-mode frequencies of the solar twin 18 Sco
Solar twins have been a focus of attention for more than a decade, because
their structure is extremely close to that of the Sun. Today, thanks to
high-precision spectrometers, it is possible to use asteroseismology to probe
their interiors. Our goal is to use time series obtained from the HARPS
spectrometer to extract the oscillation frequencies of 18 Sco, the brightest
solar twin. We used the tools of spectral analysis to estimate these
quantities. We estimate 52 frequencies using an MCMC algorithm. After
examination of their probability densities and comparison with results from
direct MAP optimization, we obtain a minimal set of 21 reliable modes. The
identification of each pulsation mode is straightforwardly accomplished by
comparing to the well-established solar pulsation modes. We also derived some
basic seismic indicators using these values. These results offer a good basis
to start a detailed seismic analysis of 18 Sco using stellar models.Comment: 12 pages, 6 figures, to be published in A&
A super-Earth and a mini-Neptune near the 2:1 MMR straddling the radius valley around the nearby mid-M dwarf TOI-2096
Context. Several planetary formation models have been proposed to explain the observed abundance and variety of compositions of super-Earths and mini-Neptunes. In this context, multitransiting systems orbiting low-mass stars whose planets are close to the radius valley are benchmark systems, which help to elucidate which formation model dominates.Aims. We report the discovery, validation, and initial characterization of one such system, TOI-2096 (TIC 142748283), a two-planet system composed of a super-Earth and a mini-Neptune hosted by a mid-type M dwarf located 48 pc away.Methods. We characterized the host star by combining optical spectra, analyzing its broadband spectral energy distribution, and using evolutionary models for low-mass stars. Then, we derived the planetary properties by modeling the photometric data from TESS and ground-based facilities. In addition, we used archival data, high-resolution imaging, and statistical validation to support our planetary interpretation.Results. We found that the stellar properties of TOI-2096 correspond to a dwarf star of spectral type M4±0.5. It harbors a super-Earth (R = 1.24 ± 0.07 Râ) and a mini-Neptune (R = 1.90 ± 0.09 Râ) in likely slightly eccentric orbits with orbital periods of 3.12 d and 6.39 d, respectively. These orbital periods are close to the first-order 2:1 mean-motion resonance (MMR), a configuration that may lead to measurable transit timing variations (TTVs). We computed the expected TTVs amplitude for each planet and found that they might be measurable with high-precision photometry delivering mid-transit times with accuracies of âČ2 min. Moreover, we conclude that measuring the planetary masses via radial velocities (RVs) could also be possible. Lastly, we found that these planets are among the best in their class to conduct atmospheric studies using the NIRSpec/Prism onboard the James Webb Space Telescope (JWST).Conclusions. The properties of this system make it a suitable candidate for further studies, particularly for mass determination using RVs and/or TTVs, decreasing the scarcity of systems that can be used to test planetary formation models around low-mass stars
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
A large sub-Neptune transiting the thick-disk M4 V TOI-2406
We thank the anonymous referee for their corrections and help in improving the paper. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, B. Garcia, G. Guisa, A. Franco, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, J. M. Nunez, J. L. Ochoa, M. Pereyra, F. Quiroz, T. Verdugo, I. Zavala. B.V.R. thanks the Heising-Simons Foundation for support. Y.G.M.C acknowledges support from UNAM-PAPIIT IG-101321. B.-O. D. acknowledges support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). R.B. acknowledges the support from the Swiss National Science Foundation under grant P2BEP2_195285. M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow. A.H.M.J.T acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement nffi 803193/BEBOP), from the MERAC foundation, and from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1). T.D. acknowledges support from MIT's Kavli Institute as a Kavli postdoctoral fellow Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to MT. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. Funding for the TESS mission is provided by NASA's Science Mission Directorate. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). We thank the TESS GI program G03274 PI, Ryan Cloutier, for proposing the target of this work for 2-min-cadence observations in Sector 30. This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This work includes data collected at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham.
This paper includes data taken on the EDEN telescope network. We acknowledge support from the Earths in Other Solar Systems Project (EOS) and Alien Earths (grant numbers NNX15AD94G and 80NSSC21K0593), sponsored by NASA. Some of the observations in the paper made use of the High-Resolution Imaging instrument Zorro (Gemini program GS-2020B-LP-105). Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini South telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This work made use of the following Python packages: astropy (Astropy Collaboration 2013, 2018), lightkurve (Lightkurve Collaboration 2018), matplotlib (Hunter 2007), pandas (Wes McKinney 2010), seaborn (Waskom & The Seaborn Development team 2021), scipy (Virtanen et al. 2020) and numpy (Harris et al. 2020).Context. Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets are highly suitable for atmospheric study via transmission spectroscopy in the infrared, such as with JWST. Aims. Here we report the discovery and validation of a sub-Neptune orbiting the thick-disk, mid-M dwarf star TOI-2406. The star's low metallicity and the relatively large size and short period of the planet make TOI-2406 b an unusual outcome of planet formation, and its characterisation provides an important observational constraint for formation models. Methods. We first infer properties of the host star by analysing the star's near-infrared spectrum, spectral energy distribution, and Gaia parallax. We use multi-band photometry to confirm that the transit event is on-target and achromatic, and we statistically validate the TESS signal as a transiting exoplanet. We then determine physical properties of the planet through global transit modelling of the TESS and ground-based time-series data. Results. We determine the host to be a metal-poor M4 V star, located at a distance of 56 pc, with properties T-eff = 3100 +/- 75 K, M-* = 0.162 +/- 0.008M(circle dot), R-* = 0.202 +/- 0.011R(circle dot), and [Fe/H] = -0.38 +/- 0.07, and a member of the thick disk. The planet is a relatively large sub-Neptune for the M-dwarf planet population, with R-p = 2.94 +/- 0.17R(circle plus) and P= 3.077 d, producing transits of 2% depth. We note the orbit has a non-zero eccentricity to 3 sigma, prompting questions about the dynamical history of the system. Conclusions. This system is an interesting outcome of planet formation and presents a benchmark for large-planet formation around metal-poor, low-mass stars. The system warrants further study, in particular radial velocity follow-up to determine the planet mass and constrain possible bound companions. Furthermore, TOI-2406 b is a good target for future atmospheric study through transmission spectroscopy. Although the planet's mass remains to be constrained, we estimate the S/N using amass-radius relationship, ranking the system fifth in the population of large sub-Neptunes, with TOI-2406 b having a much lower equilibrium temperature than other spectroscopically accessible members of this population.Heising-Simons FoundationPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT)Universidad Nacional Autonoma de Mexico IG-101321Swiss National Science Foundation (SNSF)European Commission PP00P2-163967
PP00P2-190080
P2BEP2_195285MIT's Kavli Institute as a Juan Carlos Torres FellowEuropean Research Council (ERC) nffi 803193/BEBOPMERAC foundationUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) nffi ST/S00193X/1MIT's Kavli Institute as a Kavli postdoctoral fellowSwiss National Science Foundation (SNSF)Australian Research CouncilFonds de la Recherche Scientifique - FNRS FRFC 2.5.594.09.FSwiss National Science Foundation (SNSF)French Community of Belgium in the context of the FRIA Doctoral GrantNASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research CenterNASA's Science Mission DirectorateNational Aeronautics and Space Administration under the Exoplanet Exploration ProgramTESS GI program G03274National Science Foundation (NSF)Earths in Other Solar Systems Project (EOS)Alien Earths - NASA NNX15AD94G
80NSSC21K0593High-Resolution Imaging instrument Zorro (Gemini program) GS-2020B-LP-105NASA Exoplanet Exploration ProgramNational Aeronautics & Space Administration (NASA)National Science Foundation (NSF
A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
Planets with radii between that of the Earth and Neptune (hereafter referred
to as sub-Neptunes) are found in close-in orbits around more than half of all
Sun-like stars. Yet, their composition, formation, and evolution remain poorly
understood. The study of multi-planetary systems offers an opportunity to
investigate the outcomes of planet formation and evolution while controlling
for initial conditions and environment. Those in resonance (with their orbital
periods related by a ratio of small integers) are particularly valuable because
they imply a system architecture practically unchanged since its birth. Here,
we present the observations of six transiting planets around the bright nearby
star HD 110067. We find that the planets follow a chain of resonant orbits. A
dynamical study of the innermost planet triplet allowed the prediction and
later confirmation of the orbits of the rest of the planets in the system. The
six planets are found to be sub-Neptunes with radii ranging from 1.94 to 2.85
Re. Three of the planets have measured masses, yielding low bulk densities that
suggest the presence of large hydrogen-dominated atmospheres.Comment: Published in Nature on November 30, 2023. Supplementary Information
can be found in the online version of the paper in the journa
- âŠ