5,110 research outputs found

    Implementation costs of a multi-component program to increase human papillomavirus (HPV) vaccination in a network of pediatric clinics

    Get PDF
    Introduction: HPV vaccination is both a clinically and cost-effective way to prevent HPV-related cancers. Increased focus on preventing HPV infection and HPV-related cancers has motivated development of strategies to increase adolescent vaccination rates. This analysis estimates the average cost associated with implementing programs aimed at increasing HPV vaccination from the perspective of the clinic decision makers. As providers and healthcare organizations consider vaccination initiatives, it is important for them to understand the costs associated with implementing these programs. Methods: Healthcare provider assessment and feedback, reminders, and education; and parent education/reminder strategies were implemented in a large pediatric clinic network between October 2015 and February 2018 to improve HPV vaccination rates. A micro-costing method was used in 2018 to prospectively estimate program implementation costs with the clinic as the unit of analysis. A sensitivity analysis assessed the effects of variability in levels of participation. Results: Assessment and feedback reports and provider education were implemented among 51 clinics at average per clinic cost of 786and786 and 368 respectively. Electronic vaccination reminders were delivered to providers and parents at a per clinic cost of 824.Theparenteducationimplementationcostwas824. The parent education implementation cost was 2,126 per clinic. Conclusion: The four complimentary HPV evidence-based strategies were delivered at a total cost of 157,534or157,534 or 4,749 per clinic, including staff training and participant recruitment, reaching 155,000 HPV vaccine eligible adolescents

    Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry

    Get PDF
    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm−1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation (SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5–1.2) are only slightly increased over non-irrigated soils (0.1–0.5). Only 8–15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values \u3e12, measured by 1:1 water–soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (\u3c0.7 mS cm−1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1–1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to \u3c7 and increases the EC to around 4.1 mS cm−1, thus limiting negative impacts from sodicity. With sustained irrigation, however, downward flow of excess irrigation water depletes gypsum, increasing soil-water SAR to \u3e14 and decreasing EC in soil water to 3.2 mS cm−1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters

    Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry

    Get PDF
    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm−1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation (SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5–1.2) are only slightly increased over non-irrigated soils (0.1–0.5). Only 8–15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values \u3e12, measured by 1:1 water–soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (\u3c0.7 mS cm−1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1–1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to \u3c7 and increases the EC to around 4.1 mS cm−1, thus limiting negative impacts from sodicity. With sustained irrigation, however, downward flow of excess irrigation water depletes gypsum, increasing soil-water SAR to \u3e14 and decreasing EC in soil water to 3.2 mS cm−1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters

    A molecular theory for two-photon and three-photon fluorescence polarization

    Get PDF
    In the analysis of molecular structure and local order in heterogeneous samples, multiphoton excitation of fluorescence affords chemically specific information and high-resolution imaging. This report presents the results of an investigation that secures a detailed theoretical representation of the fluorescence polarization produced by one-, two-, and three-photon excitations, with orientational averaging procedures being deployed to deliver the fully disordered limits. The equations determining multiphoton fluorescence response prove to be expressible in a relatively simple, generic form, and graphs exhibit the functional form of the multiphoton fluorescence polarization. Amongst other features, the results lead to the identification of a condition under which the fluorescence produced through the concerted absorption of any number of photons becomes completely unpolarized. It is also shown that the angular variation of fluorescence intensities is reliable indicator of orientational disorder

    Benzylideneoxymorphone: A New Lead for Development of Bifunctional Mu/Delta Opioid Receptor Ligands

    Get PDF
    Opioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administration of delta opioid receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, representing a new lead for designing bifunctional MOR/DOR ligands

    Jump-like unravelings for non-Markovian open quantum systems

    Full text link
    Non-Markovian evolution of an open quantum system can be `unraveled' into pure state trajectories generated by a non-Markovian stochastic (diffusive) Schr\"odinger equation, as introduced by Di\'osi, Gisin, and Strunz. Recently we have shown that such equations can be derived using the modal (hidden variable) interpretation of quantum mechanics. In this paper we generalize this theory to treat jump-like unravelings. To illustrate the jump-like behavior we consider a simple system: A classically driven (at Rabi frequency Ω\Omega) two-level atom coupled linearly to a three mode optical bath, with a central frequency equal to the frequency of the atom, ω0\omega_0, and the two side bands have frequencies ω0±Ω\omega_0\pm\Omega. In the large Ω\Omega limit we observed that the jump-like behavior is similar to that observed in this system with a Markovian (broad band) bath. This is expected as in the Markovian limit the fluorescence spectrum for a strongly driven two level atom takes the form of a Mollow triplet. However the length of time for which the Markovian-like behaviour persists depends upon {\em which} jump-like unraveling is used.Comment: 11 pages, 5 figure

    A photonic basis for deriving nonlinear optical response

    Get PDF
    Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as coefficients in a power series - nonlinear optical susceptibilities signifying a propensity to generate optical harmonics, for example. Taking the subject to a deeper level requires a more detailed knowledge of the structure and properties of each nonlinear susceptibility tensor, the latter differing in form according to the process under investigation. Typically, the derivations involve intricate development based on time-dependent perturbation theory, assisted by recourse to a set of Feynman diagrams. This paper presents a more direct route to the required results, based on photonic rather than semiclassical principles, and offers a significantly clearer perspective on the photophysics underlying nonlinear optical response. The method, here illustrated by specific application to harmonic generation and down-conversion processes, is simple, intuitive and readily amenable for processes of arbitrary photonic order. © 2009 IOP Publishing Ltd
    • …
    corecore