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Abstract 

 
Opioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administr ation of delta opioid 

receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR 

agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, 

representing a new lead for designing bifunctional MOR/DOR ligands.  
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Chronic severe pain is a considerable burden facing public health, costing the United States an estimated $560-635 
billion in health care costs and loss of productivity in 2011.

1
 Opioid analgesics remain the standard treatment for severe 

pain, due to their ability to inhibit nociceptive processing and maintain the patient in a state of well-being.
2
 Despite their 

benefits and widespread use, long-term use of opioids such as morphine and oxycodone is hindered by the rapid 
development of analgesic tolerance. Tolerance to intestinal motility does not develop as rapidly as analgesic tolerance; 
this “differential tolerance” results in severe constipation arising from the increased doses required to compensate for the 
diminished analgesic effect.

3
 Analgesics that produce a blunted tolerance effect would be expected to lower healthcare 

costs and provide beneficial outcomes to patients. 

Three opioid receptor (OR) types have been cloned and characterized, namely mu (MOR), delta (DOR), and kappa 
(KOR), and are members of the G protein-coupled receptor (GPCR) superfamily. All approved opioid analgesics are 
MOR agonists, and produce analgesic and euphoric effects. Bifunctional opioid receptor ligands possessing dual profiles 
of OR type agonism and antagonism may also offer certain pharmacologic advantages. For example, buprenorphine 
(Suboxone; Subutex) is a MOR partial agonist/KOR antagonist that is used as an alternative to methadone for treating 
opioid dependence.

4
 

There is considerable evidence that concomitant DOR antagonism attenuates the development of tolerance to MOR 
agonists. Studies using DOR knockout mice

5
 and DOR-specific antibodies,

6
 as well as pharmacologic inhibition of DOR 

using naltrindole,
7
 support this hypothesis. These proof-of-concept studies have led to the development of ligands that are 

bifunctional MOR agonists and DOR antagonists. Building upon the success of DIPP-NH2[Ψ], the first bifunctional, 
tetrapeptide MOR agonist/DOR antagonist to produce antinociception with a low propensity to produce tolerance and 
dependence,

8
 several small-molecule bifunctional MOR/DOR probes have been produced (Figure 1) and demonstrate 

efficacy in vitro and in vivo.
9-12

 To overcome limitations of solubility, oral bioavailability, and receptor-type potency, we 
have set out to identify new chemical leads for bifunctional MOR agonist/DOR antagonist ligands. 

 

 

Figure 1. Three examples of small-molecule, bifunctional MOR agonist/DOR antagonist lead molecules.
10-12

 

 

The DOR antagonist benzylidenenaltrexone (BNTX, Figure 2) was first described as a DOR-selective antagonist.
13

 
This compound was rationalized using the “message-address concept,” whereby the naltrexone “message” was selectively 
targeted to DOR by the 7-benzylidene “address.” Subsequent reports

14,15
 demonstrate BNTX binds with similar affinity to 

MOR and antagonizes the effects of MOR agonists with similar potency as DOR agonists.
16

 Thus, we consider BNTX to 
be a MOR/DOR antagonist. The N-substituent frequently modulates efficacy in the 4,5-epoxymorphinan series of MOR 
analgesics. According to a ligand-based, quantitative conformationally-sampled pharmacophore describing DOR 
ligands,

17
 N-alkyl substitutions do not alter predicted efficacy in this same series. Applying the message-address 

concept,
18,19

 we hypothesize that substitution of the N-cyclopropylmethyl “message” of BNTX with N-alkyl groups 
satisfying the “message” (Figure 2) would enhance MOR efficacy and maintain low efficacy at DOR, resulting in MOR 
agonist/DOR antagonist bifunctional ligands. 

 

Figure 2. Schematic describing the “message-address” rationale for designing bifunctional MOR agonist/DOR antagonist 
probes based on modification of oxymorphone. CPM = cyclopropylmethyl. 

 

Synthesis of compounds 6 – 8 was achieved from oxycodone as shown in Scheme 1. Oxycodone (1) was converted to 
oxymorphone (2) using BBr3 in the usual manner.

20
 To synthesize N-substituted analogues 7 and 8, 2 was N-demethylated 



  

to noroxymorphone (3) using α-chloroethyl chloroformate
21

 and N-alkylated using the appropriate alkyl bromide. 
Intermediates 2, 4, and 5 were converted to C7-benzylidene analogues 6 – 8 under basic Claisen conditions.

13
  Purified 

final products were converted to water-soluble salts (HCl, oxalate) prior to pharmacologic evaluation.
22

 

 

 

Scheme 1. Synthesis of 6-8. Reagents and Conditions: i) BBr3, CHCl3, 0°C, 30 min; NH4OH(aq), 0°C, 30 min. ii) Ac2O, 
reflux, 24 hr; 1-chloroethyl chloroformate, K2CO3, Cl(CH2)2Cl, reflux, 24 hr; NaOH, MeOH, reflux, 3 hr. iii) R-Br, 
K2CO3, RT, 24 hr. iv) PhCHO, NaOH, MeOH, 0°C, 18 hr. 

 

OR binding results are shown in Table 1. Compound 6 bound preferentially to MOR and DOR over KOR. Affinity for 
MOR and DOR generally decreased as a function of N-arylalkyl chain length, whereas KOR affinity was improved for 7 
and 8 compared to 6. This caused a net decrease in MOR/DOR preference over KOR, similar to BNTX.

14
 The N-methyl 

analogue (6) exhibited the highest affinity for MOR and DOR of the series, approximately 3- and 20-fold greater than N-
phenylethyl (7) and N-phenylpropyl (8) analogues for MOR, respectively. This was unexpected, as N-phenylethyl and N-
phenylpropyl 4,5-epoxymorphinans are generally higher affinity MOR agonists than their parent N-methyl 
equivalents.

23,24 

 

Table 1. Ki values of analogues 6 – 8 at MOR, DOR, KOR, and receptor selectivity ratios.  
 Ki (nM) ± SEM

a
   

Compound MOR DOR KOR KOR/MOR MOR/DOR 

6 17.5 ± 1.10 14.4 ± 0.65 1067 ± 39 61 1.2 

7 56.0 ± 3.80 84.0 ± 2.80 602 ± 60 10.8 0.7 

8 313 ± 23 168 ± 9.20 793 ± 58 2.5 1.9 
BNTX

b
 26 6.2 48 2 4 

a
Competition binding for compounds were performed in CHO cells stably transfected with and overexpressing the human opioid receptor types hMOR, hDOR and 

hKOR. Assays were performed in triplicate of duplicates and reported as mean Ki values ± SEM. MOR was labeled using 1.3 nM [
3
H]DAMGO, DOR using 1.2 nM 

[
3
H]DPDPE, and KOR using 1.7 nM [

3
H]U69,593. Ki values for standard compounds: DAMGO (MOR, 1.5 nM), DPDPE (DOR, 2.4 nM), U69,593 (KOR, 1.1 nM).  

b
Data from reference 

14 

 

 Table 2 shows the results of a [
35

S]GTPγS assay to determine the relative efficacy of compounds at MOR and DOR. 
Compounds 6 and 7 were found to be MOR partial agonists with 6 demonstrating approximately 3-fold higher potency 
than 7. Efficacy data for 8 could not be determined due to low potency. Compounds 6 and 7 possess no significant agonist 
activity at DOR. Compound 6 was tested further to determine DOR antagonist potency. In the GTPγS functional assay, 6 
caused a parallel rightward shift in the SNC80 concentration-response curve with Ke of 138 ± 24 nM (Table 2). Taken 
together, compound 6 (benzylideneoxymorphone, UMB 246) exhibited a profile of MOR/DOR preferential binding 
affinity, partial agonist effects at MOR, and antagonist activity at DOR. Compound 6 was therefore selected for further 
characterization in vivo. 

 

Table 2. EC50 (nM)  and %Emax of oxymorphone analogues 6 – 8 at MOR and DOR.a  
 MOR  DOR 

Compound EC50 (nM) %Emax  EC50 (nM) %Emax 

6 72 ± 11 39 ± 1.3  N.D. N.D.
b
 

7 253 ± 70 52 ± 3.8  N.D. < 10 
8 N.D. < 10  N.D. N.D. 



  

a
Percent maximal stimulation relative to standard agonist (MOR, DAMGO; DOR, DPDPE; KOR, U69,593). 

b
Caused a parallel, rightward shift in SNC80 

concentration-response curve using GTPγS assay (Ke = 138 ± 24 nM, n = 3). Tested as freebase.  

 

Acute antinociception assays in the mouse were performed following subcutaneous (s.c.) administration of increasing 
doses of 6.

24,25
 As shown in Figure 3, 6 produced an increase in Emax to approximately 40 % MPE with Tmax of 50 min in 

the hot plate nociception test. Peak antinociception effects for UMB2 46 were evident at 50 minutes post-administration 
for the 60 mg/kg treatment group. Repeated measures ANOVA revealed a significant difference in latency for hot plate 
nociception testing among treatment groups (p<0.01) and among time points (p<0.001).  Bonferroni post hoc analysis 
revealed that the 50 mg/kg treatment group had significantly greater antinociception, compared to saline control, at 30 
(p<0.05) minutes post-administration (Figure 3). Bonferroni post hoc analysis revealed that the 60 mg/kg treatment group 
had significantly greater antinociception, compared to saline control, at 30 (p<0.01), 50 (p<0.001), and 70 (p<0.05) 
minutes post-administration.  

 

 

Figure 3. Acute dose- and time-response curves for s.c. 6 treatment for the hot plate assay. For details, see 
25

. Significance 
relative to saline control: * p<0.05. ** p<0.01. *** p<0.001. 

 

Figure 4 shows the results from the tail-flick nociceptive test. Peak antinociception effects for 6 were evident at 30 
minutes post-administration for the 60 mg/kg treatment group. Repeated measures ANOVA revealed a significant 
difference in latency for tail-flick noticeptive testing among treatment groups (p<0.01) and among time points (p<0.001). 
Bonferroni post hoc analysis revealed that the 50 mg/kg treatment group had significantly greater antinociception, 
compared to saline control, at 70 (p<0.01) minutes post-administration (Figure 4). Bonferroni post analysis revealed that 
the 60 mg/kg treatment group had significantly greater antinociception, compared to saline control at 30 (p<0.001), 50 
(p<0.01), and 70 (p<0.01) minutes post-administration.  

 

Figure 4. Acute dose- and time-response curves for s.c. 6 treatment for the tail-flick assay. For details, see 
26

. Significance 
relative to saline control: ** p<0.01. *** p<0.001. 
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The reduced opioid receptor binding affinity and potency for compounds 7 and 8 was unexpected. Introduction of the 
C7-benzylidene may introduce a steric effect that requires BOM to adopt an altered binding pose within MOR and DOR 
active sites, thereby precluding larger N-arylalkyl substituents.  

There was some discrepancy between the Ki value (14.4 nM) and Ke value (138 nM) for 6.  Ideally, for a completely 
neutral antagonist these values should be the same. If taken at face value the higher Ke value obtained in more 
physiologically relevant buffer would suggest that 6 does have some agonist activity, albeit insufficient to show up in the 
stringent [

35
S]GTPS assay.  On the other hand the values may be reflective of the different DORs used in the assays 

(human versus rat) and/or the different environments in the in different cell lines employed (CHO versus C6).In summary, 
results presented here indicate 6 possesses a profile of MOR partial agonism and DOR antagonism in vitro. 6 also 
produces antinociception following s.c. administration, which suggests an ability to cross the blood-brain barrier and 
activate MOR in vivo. This initial structure-activity relationship (SAR) study shows longer-chain N-alkyl substituents do 
not enhance MOR potency as in the parent oxymorphone series. Further investigation into the structural features that 
improve MOR efficacy and potency in the 7-benzylideneoxymorphone series are underway and will be reported in due 
course. 
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