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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1989, VOL. 8, No. 4, 339-383 

Molecular quantum electrodynamics in chemical physics 

by D. L. ANDREWS 
School of Chemical Sciences, University of East Anglia, 

Norwich NR4 7TJ, England 

D. P. CRAIG 
Research School of Chemistry, Australian National University, 

GPO Box 4, Canberra ACT 2601, Australia 

and T. THIRUNAMACHANDRAN 
Department of Chemistry, University College, 20 Gordon Street, 

London WClH OM, England 

Molecular quantum electrodynamics (QED) is the theory of interaction of 
molecules with radiation. An essential feature is the application of quantum 
conditions to the radiation; the associated particles, which are the carriers of the 
momentum and energy, are photons. In QED the electrodynamic vacuum possesses 
zero-point energy. Fluctuations in the energy of the vacuum state are the causes of 
phenomena such as ‘spontaneous’ emission and the Lamb shift, and are the source 
of the virtual photons important in the understanding of intermolecular 
interactions. In this connection an attractive feature of the theory is its power to deal 
with the coupling between molecules within the same framework as radiation- 
molecule interactions, the molecule-molecule effects being mediated by photons, 
real and virtual. In this review the multipolar form of QED is described, and 
applications are given with some emphasis on recent work, for example three-body 
resonance and synergistic effects in two-photon two-molecule processes. After 
formulation of the theory, applications are outlined with particular reference to one- 
and two-photon absorption, spontaneous and stimulated emission, natural and 
laser-induced circular dichroism, field-induced absorption and harmonic 
generation. Among intermolecular interactions, accounts are given of resonance 
and dispersion coupling, molecule-induced circulaF dichroism, and cooperative 
two-photon absorption. 

1. Introduction 
Quantum electrodynamics in non-relativistic form is a theory that, in addition to 

many other successes, addresses at least two fundamental aspects of chemistry. One is 
the nature of long-range intermolecular forces, which, along with short-range 
interactions, determine the ccilrse of many chemical reactions, as well as the properties 
of condensed matter. The second is the interaction of light and other radiation with 
matter itself. The application to chemistry is still wider, beyond topics in this review, 
and has been recognized for a long time. In his Debye Lecture, Hirschfelder (1966) 
quoted E. Bright Wilson as saying, ‘It is no longer sufficient to teach our students how 
to solve the Schrodinger equation, they must also know quantum electrodynamics’. 
Later Feynman, in his Alix Mautner Memorial Lectures, remarked that ‘the theory 
behind chemistry is quantum electrodynamics’ (Feynman 1985, p. 8). 

0144235X/89 $3.00 0 1989 Taylor & Francis Ltd. 
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340 D. L. Andrews et al. 

This review will by implication give the rationale for such comments, which reflect 
the broad view that chemistry includes the behaviour of molecules under all conditions, 
in their response to other molecules in reactions, in their coupling to radiation, and in 
their collective behaviour at all separation distances, from condensed matter to matter 
at extreme dilution. The selection of material is weighted towards recent developments, 
particularly in nonlinear phenomena, to supplement earlier reviews (Craig and 
Thirunamachandran 1982, 1986). 

In current theories of the coupling of atoms and molecules to radiation, and of 
molecules to other molecules, there are two broad strategies. In the semi-classical 
method the atoms and molecules are treated quantum mechanically and the radiation 
classically. In quantum electrodynamics (QED) both matter and radiation are treated 
using quantum mechanics. The former method is more familiar. It has had notable 
successes, such as the calculation of the rate of light absorption through the Einstein 
B-coefficient, Placzek’s account of Raman scattering, the characterization of optical 
rotatory strength, and circular dichroism. However, it fails to give an account, for 
example, of spontaneous emission (including fluorescence), the change to R - distance- 
dependence in the dispersion energy at long range, and the Lamb shift. It continues to 
be popular within the range of its proper applications. 

In the semi-classical method the radiation field is treated as an external influence 
imposed upon the matter, and unaffected by it. It is not a part of the system being 
studied. Thus energy conservation does not apply in a strict sense, inasmuch as energy 
lost or gained by the atoms and molecules is not counterbalanced in the treatment by a 
gain or loss by the radiation. This creates no difficulties so long as the radiation-matter 
coupling is weak. 

Quantum electrodynamics, having its origins in the work of Dirac (1927), and 
developed later by Feynman, Schwinger and Tomonaga (see Schwinger (1958) for a 
collection of early papers), provides at the present time the most precise description of 
the interaction of light and matter, correct in all applications so far made. Its principal 
characteristic is that light and matter together make up a closed dynamical system that 
is treated quantum mechanically. It lends itself naturally to descriptions in terms of 
photons, which are the particles associated with the quantized electromagnetic field. 
Energy is conserved within the closed system, being exchanged between matter and 
radiation: excitation of atoms and molecules is accompanied by loss of photons from 
the radiation and vice versa, satisfying energy conservation. 

The particular form of QED best suited to molecular problems is the non-covariant 
version in the Coulomb gauge (see for example Power (1964), Healy (1982) and Craig 
and Thirunamachandran (1984)). In essence this allows us to separate out the 
Coulombicinteractions within each atom or molecule. We may for that reason treat the 
molecular part of the coupled system of molecules and radiation as a problem already 
solved in ordinary molecular quantum mechanics. A second feature is that there is a 
choice in practice between two ways of treating the interaction between molecules and 
radiation: minimal coupling and multipolar coupling. They are equivalent under a 
canonical transformation, and each has its merits. Either allows interactions between 
molecules to be discussed in the same frame as interactions between molecules and 
radiation; by choosing the multipolar form, however, we get a beautifully simple 
picture. In this formulation the only way in which molecules couple together at 
distances beyond that of overlapping electron clouds is through the radiation field, 
mediated by an exchange of photons. Intermolecular coupling thus appears as a change 
of the total energy of molecules plus field, produced by molecule-radiation coupling. 
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Molecular QED in chemical physics 34 1 

Such a mediation ensures that the effects are fully retarded, namely proper allowance is 
made for the time of propagation (at the speed of light) for the influence of one molecule 
to act on another. 

In both semi-classical and quantum electrodynamical methods the primitive 
interaction between radiation field and particles is based on the Lorentz force 

F = e(e + i x b), 

where e is the charge of the particle and i. its velocity; e and b are the electric and 
magnetic radiation field vectors. This force is a driving term in the equations of motion, 
together with the electrostatic forces between the particles. The contribution made by 
( 1 . 1 )  to the coupling energy consists of both electric terms (through the electric 
moments of the molecular system) and magnetic terms (through the magnetic 
moments). Typically the latter are smaller by a factor of approximately a (the fine 
structure constant); so we find that the leading term involves the electric dipole, 
followed in the next order by electric quadrupole and magnetic dipole, and so on in 
higher orders. 

Imposing quantum conditions on the electromagnetic field is the key step in 
quantum electrodynamics. In classical electromagnetism the plane-wave solutions of 
Maxwell’s equations in free space give for the macroscopic electric field E(r,t) at 
position r and time t, 

E(r, t )  = E, exp [i(k * r - ot)], (1.2) 
where k is the wave-vector and w the angular frequency. The constant amplitude E, and 
the wave-vector k are unrestricted vectors. The modulus I kl = k is the wavenumber; k/2n 
is the number of waves per unit distance along k. Also, k = o / c ,  c being the velocity of 
light. For the purpose of quantization, the radiation field is first considered within a 
‘box’ with periodic boundary conditions, so that the number of waves is reduced to a 
countable infinity. This makes possible a normalization of the states. Each 
combination of admissible wavenumbers, for the three directions in the box, defines a 
wave-vector k, which points in the direction of propagation and has angular frequency 
o = c k .  For each k there are two field modes with different polarization directions, 
perpendicular to k and to each other, which define the directions of the electric vector. 
Circular and elliptical polarizations are formed by linear combination. 

It can be shown that the Hamiltonian for the radiation decomposes into a sum of 
such modes; each term has the structure of the Hamiltonian for a harmonic oscillator. 
Quantization is immediate. Each mode has energy levels 

E(k)=(n+$)hck, n=O, 1,2 , .  .. . 
The total is the sum over k and over polarization 1, and the full radiation state vector is 
a product of mode state vectors. The overall state of the radiation field is thus generally 
specified by giving the quantum number for each mode: 

b I ( k l , ~ l ) ,  n,(k,, 121, - * .>. (1.4) 
Since the ket In(k, 1)) designates a state with the energy of n photons, n is often referred 
to as the occupation number for the mode (k,A). In the general description of a 
radiation state it is conventional to include only modes with n#O. 

Some essential features of QED follow from these results. A field with no photons, 
the ‘vacuum field’, retains zero-point energy $hck in each mode and has the ability to 
perturb molecular states. In classical electrodynamics it is possible to postulate a 
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342 D. L. Andrews et al. 

molecular system isolated from radiation. The molecular states of such an isolated 
system would be stationary in a strict sense: an excited state would never decay. This is 
not true in quantum electrodynamics, nor does it agree with experiment. An excited 
molecule cannot be in a stationary state, because the perturbation caused by zero-point 
radiation is ever-present; the molecule must eventually decay under this perturbation, 
at a rate that is calculable, and can be shown to agree with observations of, for example, 
fluorescence lifetimes. 

In the harmonic oscillations of a particle we are used to the idea that in the zero- 
point state (as in all states) the position of the particle and its conjugate momentum 
cannot be specified precisely at the same time. They must be seen as fluctuating about 
their most probable values. Similar uncertainty relations apply to the fields e and b in 
the modes of the electromagnetic field. Thus for the zero-point level, while the average 
field e is zero, the average of ez is not; it is proportional to hck. These fluctuations can be 
seen as the underlying cause of fluorescence, for example, and of other non-classical 
phenomena. 

Another important consequence of the presence of the zero-point energy in the 
electromagnetic vacuum is that over short times energy may be ‘borrowed’ from it to 
effect processes otherwise forbidden by energy conservation. The basis of this 
picturesque description is the time-energy uncertainty relation AE At -3h. Over short 
time intervals energy is not a constant even in a closed system, that is, over short times 
energy is not conserved. Its fluctuations cause processes such as excitation-de- 
excitation of electronic transitions (virtual). They account, for example, for the 
dispersion interactions between molecules. In that case the moment fluctuation in one 
molecule causes a response moment in the other, and the moments couple to give an 
attraction. The transitions are described as virtual, and occur by energy ‘borrowing’ in 
extremely short-term ‘loans’ from the zero-point energy. The interval At is so short that 
there is no sense in speaking of borrowing from individual modes. Frequencies are 
undefined over such periods, and the borrowing is from the entire system. 

2. Formulation of QED for molecules 
The quantum electrodynamical Hamiltonian for an ensemble of molecules 

interacting with radiation may be represented as follows: 

where 
. I -  

(2.4) 
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Molecular QED in chemical physics 343 

The first term in (2.1) is the radiation Hamiltonian, and its explicit expression (2.2) in 
terms of the transverse electric displacement field operator d"(r) and the magnetic field 
operator b(r) is the operator equivalent of the classical expression for electromagnetic 
energy. The transverse displacement vector rather than the electric field must appear in 
the multipolar method to keep variables to the canonically conjugate form. The vector 
co1d'(r) gives the local field felt by molecules in a sample, as modified by the 
polarization field due to the surrounding material. The next term given by (2.3) is the 
Hamiltonian in the Schrodinger representation for molecule 5 located at R,. The 
operators q, and pa are respectively the position vector and the canonical momentum 
of electron a, and V([) is the total intramolecular energy. The last term in (2.1) denotes 
the interaction between radiation and matter, expressed by (2.4) in terms of the 
multipole operators p([) (electric dipole), m(5) (magnetic dipole), Q([) (electric 
quadrupole), etc. These are the leading terms of an infinite multipolar series. The last 
two terms of (2.4) represent the leading contribution to an additional diamagnetic 
interaction energy, and a field-independent contribution only significant for self-energy 
calculations; p' is the transverse component of the electric polarization. 

In the majority of cases the electric dipole term alone may be used without 
significant loss of accuracy. The justification is the fact that, provided each molecule- 
photon interaction is electric-dipole-allowed, the contributions from the other terms in 
(2.4) are much smaller, the electric quadrupole and magnetic dipole being less by a 
factor of approximately a (the fine structure constant) and the diamagnetic term smaller 
by a factor a2. For phenomena involving molecular chirality, such as optical rotation, it 
is necessary to include the higher-order terms for each chiral centre. 

Two key features of (2.1) should be noted. First, neither the eigenstates of Hrad nor 
those of Hm,,,([) are stationary states: the radiation field modifies the form of the 
molecular wavefunctions and the presence of matter modifies the form of the radiation 
wavefunctions. It is this coupling that permits the transfer of energy from one part of the 
system to the other. As noted in section 1, the coupling exists even in the vacuum field, 
with no photons present. In addition to fluorescence, it is responsible for splitting the 
22S and 22P states of atomic hydrogen (the Lamb shift). The second feature is that the 
adoption of the multipolar form of the radiation-matter interaction results in the 
precise cancellation of all Coulombic terms from the Hamiltonian for the system: hence 
no cross-terms involving molecular pairs appear in (2.4). A result is that in this form of 
QED intermolecular phenomena are described in terms of coupling by virtual photons; 
these are photons that by definition are not observable. The formalism is at first 
surprising, but it accounts correctly for the nature of intermolecular forces, including 
retardation effects, which modify the R w 6  dependence of the dispersion energy at short 
distances to the R -  ' dependence at large separations. 

The quantum mechanical operators for particle position and momentum are 
familiar: those for the quantum electrodynamical field operators are less so. Each of the 
fields is expressible as a sum over radiation modes as described in section 1: 

[e(')(k)a('))(k)exp (ik. r)- 8(A)(k)at(d)(k)exp(-ik. r)], (2.5) 
k, A 

112 

b(r) = i (5) [b(A)(k)a(d)(k) exp (ik - r) - 6(d)(k)at(d)(k) exp (- ik * r)]. (2.6) 
k , d  2&&V 
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344 D. L. Andrews et al. 

Here Vdenotes the quantization volume, e‘”(k) is the polarization unit vector for the 
electric field in mode (k, A); b‘”(k) is the corresponding unit vector for the magnetic field, 

b‘”( k) = k x e(’)‘( k). (2.7) 
Associated with the mode (k, A) in (2.5) and (2.6) are photon creation and annihilation 
operators of the second-quantized formalism, at@)(k) and a(”)(k) respectively. They are 
defined by 

(2-8) } at‘”(k)ln(k,A)) =(n+ l)l’’l(n+ l)(k, A)), 
a‘”(k)ln(k,A))=n’’’l(n- l)(k,A)). 

These operators satisfy the commutation relations 

(2.9) I [a‘”(k), d”)(k)] = 0, 

[af(”(k), at‘”’’(k)] =0, 

[a‘”(k), ~t‘“’(k)] = ~ 3 ~ ~ ~ 6 ~ ~ ~ .  

Using these results, it is readily shown that the radiation Hamiltonian (2.2) may be 
expressed alternatively in terms of the number operator at,: 

(2.10) 

With the Hamiltonian given by (2. l), the time evolution of a system wavefunction I Y(t) )  
is determined by the time-dependent Schrodinger equation 

(2.1 1)  iA ~ I Y(t))  =HI !P(t)). 

The solution of this equation is not possible in closed form except in simple cases. We 
assume that the coupling between matter and radiation can be treated as a 
perturbation on the product states of H,, where 

a 
a t  

H O  = Hrad + Hmodc)* (2.12) 
5 

After application of the standard methods of time-dependent perturbation theory, we 
obtain for the rate r of an optical process the Fermi golden rule 

(2.13) 

where p is a density of states for the process. Typically p is the density of states of the 
radiation field in the energy region of the process. The transition matrix element Mfi 
connecting the initial state li) and the final state If) is given by 

< f I H i n t I ~ ~ ) < ~ ~ l H i n t I ~ ) < I I H i , t l i >  +... . (2.14) 

Here all states and energies are eigenstates and eigenvalues of H ,  and thus relate to the 
total system comprising both radiation and matter. The summations over the virtual 
(intermediate) states IZ), Ill), are taken over all such states, excluding li) and If). 

+ I , I I  ‘ (Ei-EI)(Ei-EII) 
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Since the total system is closed, the initial and final energies Ei and E, must always be 
equal (to within a quantum uncertainty limit). In the electric dipole approximation the 
interaction Hamiltonian is linear in the displacement vector field, and it follows from 
(2.5) that each Dirac bracket in (2.14) is associated with the creation or annihilation of 
one photon. Hence the rnth term in (2.14), corresponding to the mth order in 
perturbation theory, is the dominant term for an m-photon process. Similar remarks 
apply when electric quadrupole and magnetic dipole couplings are included in the 
calculations. Exceptions occur in cases where quadratic terms such as the diamagnetic 
term in (2.4) are significant. 

It should be noted that the absence of electrostatic interactions between molecules 
in the multipolar formalism means that there is no term in (2.1) representing 
interactions with an applied static electric or magnetic field. While such interactions 
could in principle be modelled by summing the couplings of each sample molecule with 
each constituent particle of the field source, it is often simpler in practice to 'dress' the 
molecular states with a suitable time-independent perturbation. In the case of a static 
electric displacement field D these dressed states are given by 

(2.15) 
s # r  

where Ir) and Is) represent eigenstates of the conventional Hamiltonian operator Hmol 
in the absence of the applied electric field, and E, is the difference between the 
corresponding zeroth-order energies E, - E,; p" is the transition electric dipole 
moment for the Is)tlr) transition. Any optical process in the presence of a static 
electric field may then be modelled using (2.13) and (2.14) with the dressed states 
as basis. 

3. One-photon absorption 
Quantum electrodynamics was first applied by Dirac (1927) to the absorption of a 

photon by an atom or molecule. This is the simplest interaction of radiation with 
matter, and the one most familiar as the primary origin of colour. It is also central to 
chemistry through almost every type of spectroscopy and photochemistry. One of the 
signal successes of the theory is that its results apply not only to light in the visible 
range, but also across the entire electromagnetic spectrum. In many cases where the 
transition electric dipole moment pis non-zero, or at least not very small, it is adequate 
to employ the electric dipole approximation to describe the allowed transitions. This 
approximation holds when the wavelength of the radiation is long compared with 
molecular dimensions; the electric field in the region occupied by the molecule is then 
essentially constant, and the coupling between the molecule at R and the field is 

To calculate the matrix element for the process, as required for application of the 
Fermi rule (2.13), we first specify the initial and final states of the system. Initially the 
molecule is in the ground state, and the state of an idealized monochromatic beam is 
given by the number of photons in the single mode (k, A). This state is represented by 

- E; 'p * d(R). 

li> = IE,)ln(k, 4). (3.1) 
In the final state the molecule is in an excited state ] E m )  and the radiation field has lost 
one photon. Thus 

I0 = IE,>l(n- 1Xk, 4)- (3.2) 
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346 D. L. Andrews et al. 

Energy is conserved overall: 

We digress at this stage to introduce time-ordered graphs that enable the matrix 
elements to be calculated easily. Although the graphical method is not essential for 
calculating first-order matrix elements, we introduce some of the basic notions now and 
discuss further aspects later when dealing with higher-order processes. The graph for 
single-photon absorption is shown in figure 1. In interpreting this graph time flows 
upwards, and the vertical line represents the changes in the molecular state during the 
process. The wavy line stands for a photon. The intersection of the vertical line and the 
wavy line represents the coupling between photon and molecule, and is usually referred 
to as an interaction vertex. Although the radiation field may contain many photons, it 
is conventional to show only the changes in the field. The initial and final states can be 
read with the aid of horizontal lines (not shown) below and above the interaction 
vertex; the energies follow immediately. 

The matrix element for single-photon absorption is 

Mfi= (f I - E ;  ‘i.d(R)li) 

e(’)‘(k)* pmo exp (ik. R), (3.4) 

where the expansion (2.5) has been used for d. The absorption rate is found from the 
Fermi rule as 

(3.5) 

This rate expression is easily modified to take account of the physically more realistic 
case where the sample contains a large number N of molecules. We then have for the 
total rate 

(k.X) 

Figure 1. Time-ordered diagram for one-photon absorption with electric dipole coupling. 
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where [ is the molecular label. In a fluid phase the molecules are randomly oriented 
with respect to the incident beam, and an orientational average of (3.6) is required. This 
gives 

The rate (3.7) must finally be related to the intensity of the incident beam through p, the 
density of states. The transition is caused only by frequencies close to the resonant 
frequency ck, within a span set by the lifetime z of the molecular state Im). Typically, for 
7- 10-9s, the circular frequency width is 8 x 107Hz or 3 x 10-3cm-1. In terms of 
Y(m) ,  the radiant energy density per unit frequency, we have 

so that 

= NBY(m), 

where 

(3.10) 

is the Einstein B-coefficient. The rate (3.9) is independent of the polarization of the 
incident beam, as a result of the orientational averaging leading to (3.7) and the scalar 
character of lpmO1’. 

4. Spontaneous emission 
An isolated atom or molecule in an excited state does not remain excited 

indefinitely but decays to the ground state with the emission of a photon. To contrast 
with stimulated emission (vide infra) this process in any region of the electromagnetic 
spectrum is referred to as spontaneous. While a molecular energy level is a stationary 
state of the free-molecule Hamiltonian, it is not stationary under the complete 
Hamiltonian, which must always include the radiation field. Spontaneous emission 
cannot be understood within the semi-classical framework since there is no external 
radiation field to perturb the atom or molecule. The excited state of a molecule is then a 
genuine stationary state of the system and there is no radiative decay. Before QED, 
spontaneous emission was understood only at a statistical level, through Einstein’s 
theory of the equilibrium balance required between absorption and the processes of 
stimulated and spontaneous emission. The microscopic mechanism of the latter 
process remained mysterious. From a quantum electrodynamical point of view, the 
electromagnetic vacuum exhibits zero-point fluctuations and can interact with an 
excited molecule, leading to radiative decay. The calculation of the spontaneous 
emission rate is straightforward and was one of the striking early successes of QED. 

The initial state of the system is IE,; 0) where the molecule is in the mth level and the 
radiation field is the vacuum. The density of states required for rate calculation by the 
Fermi rule is now associated with the final state IEo; l(k,A)). This state is highly 
degenerate because the emitted photon can occupy one of the large number of modes 
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348 D. L. Andrews et al. 

with different directions of propagation and polarization, all with energies of 
approximately Emo. By counting the number of modes with wavevector between k and 
k+dk, the density of final states can be obtained (Heitler 1954) as 

In the electric dipole approximation the matrix element for emission is 

Mfi = (l(k, 2); EoI - 8;'~ * d(R)IE, ; 0) 

The total rate for emission is found from the Fermi rule using (4.1) and (4.2), integrating 
over all directions of k, and summing over polarizations. We then have 

(4.3) 

which is equal to the Einstein A-coefficient, as found by the energy balance argument 
mentioned earlier. 

The rate (4.3) applies to emission in free space. If the molecule is contained in a 
cavity, the rate can be radically modified because of changes in the boundary 
conditions. An interesting example is that in which the transition wavelength for 
emission is greater than the cavity size; spontaneous emission is then substantially 
inhibited. Such changes have been observed in Rydberg transitions of alkali atoms 
(Hulet et al. 1985). 

5. Stimulated emission 
Emission of light from an excited atom or molecule may occur by a second route. 

When a radiation field is incident on an excited system, at a frequency equal to the 
transition frequency, it induces downward transitions at the same frequency. This 
process, called induced or stimulated emission, is the inverse of absorption, and is well 
known as the mechanism for laser action. 

In absorption the transition may be represented as 

IEm ; (n- 1Xk 2)) +- IEO ; n(k, A)>, (5.1) 

IEo;(n+ 1Hk,4Z))+lE,;n(kY42)). (5.2) 

whereas stimulated emission corresponds to 

The calculation of the stimulated emission rate follows the same lines as that of the 
absorption rate. The result is 

where N, is the number of molecules initially in the excited state, B is the Einstein 
coefficient and 9 ( m )  is the radiant energy density per unit frequency. In terms of 
radiation modes (section 2), stimulated emission goes into the mode, or modes, already 
occupied by the stimulating beam, and increases the occupation number of those 
modes. Its direction and polarization are the same as the stimulating beam, giving rise 
to intense and tightly collimated emission. In contrast, spontaneous emission is 
random in direction and polarization. It is incoherent, being produced by a large 
number of independent emitters. The emission events are uncorrelated. 

( r s t i m u l a t e d ) = N m B ~ ( o ) ,  (5.3) 
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Coherence properties in QED are different from those of classical theory, in which 
the phase of a wave can be specified simultaneously with its energy. Two classical 
beams able to exhibit interference by superposition are said to be coherent. To take an 
example, plane-wave radiation with N emitters that is perfectly in phase at some point 
gives an electric field (as h(1.2)) that is N times that of a single emitter, and an intensity 
going as N 2 .  In incoherent radiation the proportionality is with N .  In the quantum 
theory the operators for phase angle and occupation number do not commute 
(Carruthers and Nieto 1968). Application of the uncertainty principle gives the result 
that if the occupation number of a mode is specified (n > 0), so that the energy is known 
exactly, the phase is random. The quanta1 state that approaches most closely the 
classical electromagnetic wave is the so-called coherent state (Glauber 1963). Both 
phase and amplitude have some uncertainty. For large occupation number, coherent 
states are states of minimum possible uncertainty for measurements of occupation 
number and phase angle. Moreover, the property of minimum uncertainty is constant 
over time; the dispersion in the field remains constant and is independent of the field 
amplitude. 

In lasers a system of identical absorbers is pumped, typically by broadband light 
absorption, to give a high population of excited atoms or molecules. There is decay by 
stimulated emission, giving radiation with the characteristics of the coherent state. 

6. Natural circular dichroism 
The calculation of the absorption rate given in section 3 is easily extended to deal 

with circular dichroism, namely the differential rate of absorption of left- and right- 
circularly polarized light. In optically active molecules, some transitions are both 
electric- and magnetic-dipole-allowed. To calculate the rates, it is then necessary to 
take into account the couplings of the molecular transition moments to both electric 
and magnetic fields. The transition amplitude is a superposition of electric and 
magnetic dipole amplitudes. For randomly oriented systems, the electric-dipole- 
magnetic-dipole interference term depends on the handedness of the circularly 
polarized incident beam. Circular dichroism arises from this interference (Power and 
Thirunamachandran 1974, 1986). 

Let a photon of mode (k,L/R) (where L and R represent left- and right-circular 
polarization) be absorbed by a molecule at R. For the molecular transition I m ) c  lo), 
energy is conserved overall, so that Em, = hck. For simplicity the molecular states are 
assumed to be non-degenerate. With 

li> = I E O  ; n(k, L/R))> (6.1) 

10 = IE,; (n - l)(k, L / W  (6.2) 
as initial and final states, it is straightforward to calculate the matrix element for 
absorption. The coupling between the molecule and the radiation field is now given by 

Hint= -E;lp*d(R)-rn* b(R). (6.3) 

where rn is the magnetic dipole moment operator. The diagram for electric dipole 
absorption given in section 3 is now supplemented by that for magnetic dipole 
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Figure 2. Time-ordered 

i; -m.b (R) 

0 

(k:A) 

diagram for one-photon absorption with magnetic dipole coupling. 

absorption (figure 2), the complete matrix element being the sum of terms from the two 
diagrams. Using the expansions for d and b, we obtain 

MklR= -i(FV)'" e(Lm)(k). ( pmof-mmo i ) exp(ik. R), 

where the upper and lower signs hold for left- and right-circularly polarized light 
respectively. The absorption rate follows in the usual way from the Fermi rule: 

L / R  27tN nhck 1 i 1' 
p pmofcmmo . ( r  )- 3h 2EOV 

It is readily seen from (6.5) that the electric-magnetic cross-term depends on the 
handedness of light. This cross-term provides the leading contribution to circular 
dichroism, 

where Y ( w )  is the radiant energy density per unit frequency and Rmo is the optical 
rotatory strength defined by 

Rmo = Im pmo - mmo. (6.7) 
The scalar product of the polar and axial vectors in (6.7) behaves as a scalar under 
rotations, but changes sign under inversion and reflection. It is thus a pseudoscalar and 
takes opposite signs for enantiomers, as does circular dichroism itself. 

We have seen in this section how a simple extension of the electric dipole 
approximation leads to a direct calculation of circular dichroism using QED. The 
inclusion of the magnetic dipole coupling corresponds to the inclusion of the first 
derivative of the vector potential in the minimal-coupling formalism. For consistency it 
would therefore be necessary to include electric quadrupole coupling as well. However, 
a calculation similar to the one above shows that the electric-dipoledectric- 
quadrupole interference term averages to zero in an isotropic system (Craig and 
Thirunamachandran 1984). 
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7. Laser-induced circular dichroism 
With the arrival of lasers as sources of coherent radiation of high intensity, it has 

become possible to observe a new class of chiroptical processes. An example is laser- 
induced dichroism (Delsart and Keller 1978). This is the differential absorption of left- 
and right-circularly polarized light by an optically inactive (achiral) medium irradiated 
by an intense beam of circularly polarized radiation. The frequency of the intense beam 
(pump) is non-resonant with any of the transition frequencies of the achiral molecule. 
The physical picture of laser-induced circular dichroism is that the intense beam of 
circularly polarized light induces a chirality in the achiral molecule. This is then probed 
by a second beam (probe) of circularly polarized light. The differential absorption rate 
is calculated straightforwardly using QED (Thirunamachandran 1979). 

Consider the transition I r n ) c l O )  of the achiral molecule. Let the mode of the 
intense beam be (k, L) and that of the probe beam be (k, L/R). The frequency of the 
probe beam is chosen to be resonant with that of the molecular transition, namely 
EmO=hck‘. In the transition the probe beam loses one photon; the pump beam, 
however, remains unchanged overall, though it may have lost or gained a virtual 
photon in the intermediate states of the process. In the leading order of perturbation 
theory the pump beam is not coupled to the molecule: the molecule simply absorbs a 
photon from the probe beam. The time-ordered diagram is the same as that for one- 
photon absorption (figure l), and the first-order matrix element in the electric dipole 
approximation is 

The term for the coupling of the pump beam to the molecule is of third order in 
perturbation theory. It corresponds overall to the scattering of a photon from the pump 
beam and the absorption of a photon from the probe beam. Several different types of 
intermediate state contribute to the third-order matrix element. The time-ordered 
diagrams provide a convenient way of ensuring that all relevant intermediate states are 
taken into account. A typical diagram for the third-order process is shown in figure 3. It 
represents the sequence of absorption of a photon of mode (k,L/R) followed by 
absorption and emission of a photon of mode (k, L). For this sequence the molecule 
undergoes excitation to the intermediate states IE,) and IE,) and finally reaches the 
excited state IE,) for the overall transition m c O .  In the intermediate states energy is 
not conserved; there is energy conservation only between initial and final states. For the 

(7.2) I 
I (7.3) 
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m 

0 

(k,A) (k:X) 

Figure 3. Typical third-order graph for laser-induced circular dichroism. 

Using the expansion (2.5) for the d-field, the contribution to the matrix element from 
the diagram in figure 3 is easily written down: 

The total contribution to the third-order matrix element is obtained from the diagrams 
corresponding to all possible time-ordered sequences. For the present case there are six 
diagrams in all. The total third-order matrix element is 

where the magnitude depends on the third-rank tensor 

The total absorption rate is 

(7.7) 
~ L , L I R = _ I M ~ / R + M ~ , L I R I ~ ~ ,  2R 

h 

from which it is seen that the leading contribution to the differential absorption rate 
arises from the interference of first- and third-order terms. We find 
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where I is the irradiance of the beam, sl(w') is the energy density per unit frequency of 
the probe beam and f is the unit vector along k. It is convenient to express the laser- 
induced circular dichroism as a differential ratio 

The quantity A is linearly dependent on the irradiance of the pump beam and on the 
cosine of the angle between the directions of propagation of the two beams. In natural 
circular dichroism (section 6) the differential rate depends on the pseudoscalar p m. In 
laser-induced circular dichroism it depends on the contracted product of the transition 
moment and the 8-tensor, with sign depending on the relative handedness of the two 
beams. A change of helicity of the pump beam leads to a change in the sign of k in (7.9), 
resulting in a change of sign in A. 

8. Two-photon absorption 
Two-photon optical absorption measurements first became possible after the 

application of lasers as light sources. They are important because they provide 
information complementary to one-photon absorption. The selection rules for two- 
photon absorption are in general different, in the same way as vibrational Raman 
selection rules differ from infrared. For example, in centrosymmetric molecules g-u 
transitions are one-photon electric-dipole-allowed but two-photon forbidden; g-g 
and u-u are two-photon allowed but one-photon forbidden. In the language of 
perturbation theory, two-photon absorption is a second-order process and the matrix 
element involves a non-stationary intermediate state (i.e. a state for which energy is not 
conserved). The rate of two-photon absorption, and thus the absorption intensity, is 
many orders of magnitude less than one-photon absorption with typical laboratory 
sources. The absorption rate is proportional to the square of the intensity. 

Let us first consider the case of absorption of two photons from one beam. The 
initial and final states are 

The intermediate state is of the form 

where the molecule is transiently in a state IE,) and the field has lost one photon. The 
transitions I1)tli) and I f ) t l Z )  are not real processes in the technical sense. Energies 
are not conserved individually in these steps, that is Ero#hck and IE,I #hck. The 
intermediate steps are usually referred to as virtual processes and the intermediate 
states as virtual states. The real and identifiable process is the overall transition 
IEm)elEo)  with energy conservation Em, = 2hck. The time-ordered diagram for two- 
photon absorption from a single beam is shown in figure 4. The matrix element for the 
process is 

hck K P ; "  Mfi =- [n(n - l)]1'2eiej C 
2Eo v r E,o-ho'  (8.4) 
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!k.Al Ik.A) 

Figure 4. Time-ordered graph for absorption of two photons from one beam. 

where the photon mode labels have been suppressed. Since eiej is (i, j)-symmetric, only 
the (i, j)-symmetric part of the molecular tensor in (8.4) contributes. Thus 

The two-photon absorption rate for the case where the absorbers are in the fluid phase 
is now obtained by orientational averaging of the tensor products (Andrews and 
Thirunamachandran 1977). The result is 

where 

The rate (8.6) depends on the square of the beam intensity. We have seen in (3.8) that the 
radiant energy density per unit frequency, $(a), is given by 

By defining the irradiance 

nhcw I = -  v ’  
we have for the rate, 

n-1 
n 

(r > = N - ZY(w)W, 

where here 

(8.10) 

(8.1 1) 

D
ow

nl
oa

de
d 

by
 [

M
PI

 M
ax

-P
la

nc
k-

In
st

itu
te

 F
ue

r 
Ph

ys
ik

 K
om

pl
ex

er
 S

ys
te

m
e]

 a
t 0

2:
00

 1
6 

M
ay

 2
01

4 



Molecular QED in chemical physics 355 

The coefficient B(') for two-photon absorption is analogous to the Einstein B- 
coefficient in (3.10). It is of fourth power in the dipole transition moments. 

The term (n - l)/n in (8.10) giving the dependence of the rate on the radiation mode 
occupation number applies to absorption from a beam for which the occupation 
number n is exactly known. If the state of the radiation field is specified in some other 
way, the expression (8.10) is generalized to 

( r )=Ni . . (o )g (2 )B(2 ) ,  (8.12) 

where 

(8.13) 

and €and 3 are mean quantities. The expectation values in angular brackets involve 
the number operator ata, instead of its eigenvalues as in (8.10). The factor 9") is a 
measure of the coherence properties of the radiation mentioned in section 5; it is usually 
referred to as the degree of second-order coherence. For number states, as in (8.10), it is 
(n - l) /n.  For coherent states g(') = 1, and for chaotic states produced, for example, by 
thermal sources g(2) = 2. 

The discussion is easily extended to include two-photon absorption from two 
beams. With tunable lasers, two-photon absorption from two beams is experimentally 
accessible. Such experiments provide more information than from a single beam. Let 
the modes of the two beams be (k, 1) and (k', A'), and the molecular transition of interest 
be Im)t lO) .  It is assumed that one photon from each mode is absorbed so that 
E,,=hck+hck'. It is evident that two types of intermediate states are possible, 
depending on whether a photon (k,A) or (k,Y) is absorbed first. In terms of time- 
ordered diagrams, the two cases correspond to two different time sequences as shown in 
figure 5. 

The matrix element for absorption of two photons is 

mr rO 
Pi Pj  + P j  Pi 

mr ro ), (8.14) 
n'hck' 

M f i = ( s ) l i 2 ( w )  e i e j c (  Ero - h o  Ero - h d  

The transition rate, after orientational averaging, can again be written as 

<r) = N9(o)l'B'2', 

Figure 5. 

(k',L) (k,M 

Time-ordered graphs for 

(k',X) ( k A )  

absorption of two photons from two beams. 

(8.15) 
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where 

+ ccl~;(o, o’)C;:(o, o’)], (8.16) 

with 

(8.17) 

A = 4 ( e  - e’(’- 1 - le &‘I2, 
B = - le * e’I2 + 4 - le e’J2, 

C= - l e a  e‘lz- 1 +41e. e‘I2. 

In experiments using different propagation directions and polarizations, it is possible 
to obtain information about ~ ~ ~ ( w ,  a’) (McClain 1974). 

9. Static field-induced absorption 
It is well known that a static field can perturb the energy levels of atoms and 

molecules, a process termed the Stark effect. Application of an electric field also 
produces a mixing of the eigenstates of the system as represented by (2.15). This 
generally results in a change in the selection rules for optical transitions, shown by the 
appearance of normally forbidden spectral features. A classic example is provided by 
the observation of fundamental vibration-rotation lines in the spectrum of molecular 
hydrogen. 

Field-induced one-photon absorption of this kind was predicted by Condon (1932), 
who also drew attention to the analogy with Raman spectroscopy in thelimit where the 
scattered photon is of zero frequency. The process may also be pictured as two-photon 
absorption with one photon of zero frequency, as shown by the time-ordered diagrams 
in figure 6. In these diagrams the horizontal line denotes the static field, which may be 
regarded as a zero-frequency field without propagation characteristics. 

There are two routes to the rate expression for field-induced absorption. One 
involves time-dependent perturbation theory as in the case of two-photon absorption 
discussed in section 8. The alternative method, which leads to identical results, is to 
recast the rate equation for one-photon absorption in terms of base states dressed by a 
static electric displacement field D according to (2.15). For a system perturbed by the 
static field, (3.5) and (3.8) give the rate, for a system fixed in space: 

(k.M 

Figure 6. 

m 

r 

0 

Graphs for field-induced one-photon absorption. 

(9.1) 
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where the dressed states 10) and Im') are given by 

10) = IEO) +E;' C (pro - D)EG'lEr) +. . . , (9.2) 
r # O  

Im') = IE,) + E; ' (p'". D)E&'lEr) + . . . . (9.3) 
r + m  

For the interesting case where the transition Im) t 10) is electric-dipole-forbidden in the 
absence of the static field, we have pmo = 0, and the leading terms in the rate are 

$(o) (pw * D)(pro * e@)) (pm e(")(pr0 - 
(9.4) 

ErO + c  r=- 
2h2&9 I ,& Ero - ho r#O 

The result is more conveniently expressed in terms of a molecular response tensor S ,  
defined as 

Hence for a fluid sample the absorption rate is 

First we consider the case where the sample molecules are non-polar, and not oriented 
by application of the static field. After performing the appropriate isotropic rotational 
average, we have for the rate 

- (qfs;; + q;s;; - 4Sgsy;)], (9.7) 

where $ is the angle between the direction of the static field and the electric polarization 
vector of the radiation. The result may be expressed in the form 

(9.9.) 

Since $ is experimentally controllable, a study of the $-dependence of each line in the 
field-induced spectrum enables a corresponding value of a to be determined. This can 
lead directly to a symmetry classification of each induced transition, in many cases 
giving an unambiguous result (Andrews and Sherborne 1984). 

A separate issue is the change in intensity of dipole-allowed transitions in polar 
molecules on application of a static field. Here the result may be obtained from (9.1) by 
performing a Boltzmann-weighted orientational average taking into account the 
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(k ,A)  (kA) 

Figure 7. Typical graph for field-induced two-photon absorption. 

preferential alignment of the molecules with the field (Andrews and Harlow 1984). The 
leading terms in this case are given by (Andrews and Sherborne 1986) 

where 

(9.1 1) 

and poO is the permanent molecular dipole moment. Under normal experimental 
conditions y<O.1, and the cothy term is well approximated by a Taylor series. A 
comparison of (9.10) and (3.9) then shows that the field-induced change in the 
absorption rate is given approximately by 

(9.12) 

The overall sign of the intensity change thus depends on both the experimentally 
variable angle $ between the direction of the static field and the polarization direction 
of the radiation, and also on the molecule-fixed angle between the permanent and 
transition dipole moments. 

Similar electro-optical effects arise in two-photon spectroscopy. Again the 
application of a static field can affect the appearance of a two-photon spectrum through 
two distinct mechanisms. One involves a nonlinear electro-optical channel in which 
the static field plays the role of a zero-frequency photon, as illustrated in the time- 
ordered diagram of figure 7. This mechanism results in the appearance of new lines 
allowed under three-photon selection rules in the two-photon spectrum. For example, 
transitions to excited states of B,, symmetry h D6, molecules, E,, in D,, molecules, or 
A,, in Oh species, which are rigorously forbidden under normal two-photon selection 
rules, all become allowed through the perturbing influence of the static field. The other 
mechanism, which is again specifically relevant to polar fluids, is associated with a 
partial molecular alignment produced by the applied field. The resultant anisotropy 
produces a relaxation of symmetry constraints on allowed two-photon transitions 
(Andrews et al. 1988). 

10. Harmonic generation 
Harmonic generation is a term used to describe the conversion of high-intensity 

laser radiation into output radiation with a frequency w' equal to a multiple m times the 
input frequency w. It depends on incident fields strong enough to excite the nonlinear 
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Y 0 5 

r 

0 2 
(k.M (k,A) 

Figure 8. Graphs for second-harmonic generation. 

response of a molecule. Familar light-scattering processes, such as Rayleigh scattering, 
depend only on the linear part of the molecular response. In quantum electrodynamical 
terms the process comprises the annihilation of m laser photons and the creation of an 
mth-harmonic photon, the state of the conversion medium remaining unchanged 
overall. One of the distinctive features is that such processes generally entail 
constructive interference between signals from different molecules in the sample, and 
are therefore termed coherent. The result is that harmonic generation is associated with 
conversion efficiencies that are remarkable for multiphoton processes. Consequently 
harmonic generation is widely used for the upward frequency conversion of laser 
radiation. 

The quantum electrodynamical representation of harmonic generation is best 
illustrated by reference to the most familiar example, second-harmonic generation 
(SHG), often referred to as frequency doubling. Two pump photons (k, A) are destroyed 
and one second-harmonic photon (k', 2) created in each interaction; the appropriate 
time-ordered diagrams are shown in figure 8. The corresponding matrix element for a 
molecule c located at R, is given by 

312 
M,i(c)= mi(&) (k*k')'/'[n(n- 1)]"2/?ijk(~)Z~ejekexp Ci(2k- k'). R,], (10.1) 

where @ijk is the hyperpolarizability tensor given by 

1 pi 0s pjpk sr rO pyp7pp + B,,'T $ [ (Eso - 2hw)(E,, - h a )  (Eso + ho)(Ero - hw) 

In (10.1) n is the number of pump photons in the quantization volume K and e and e' 
are the polarization vectors for the pump and second-harmonic photons respectively. It 
is essential to retain the phase factor in (10.1) since it is responsible for determining 
coherent response. 
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360 D. L. Andrews et al. 

In general, the collective signal from a molecular ensemble is given by the Fermi rule 

(10.3) 

where the summation is over all molecules within the interaction volume; p is the 
density of radiation states in the energy region of the harmonic frequency d = 2 m  
When all molecules are of the same chemical species, differences between the individual 
matrix elements Mfi([) result only from the differing displacements and orientations 
within the sample. For a fluid it is helpful to rewrite (10.3) as a sum of diagonal (one- 
centre) and off-diagonal (correlation) terms: 

(10.4) 

where the angular brackets denote the rotational average. 
In evaluating the first term of (10.4), the position-dependent phase factors 

disappear, and orientational differences between contributions from different 
molecules vanish on rotational averaging. This term therefore gives an overall rate 
contribution that is directly proportional to the number of scatterers N ,  and thus 
represents the incoherent signal: 

(10.5) 

The second term of (10.4), however, involves a product of phase factors associated with 
different molecules, and represents a coherent contribution: 

(10.6) 

In the general case summation leads to complete cancellation of the various cross- 
terms through destructive interference in the phase factors. The important exception is 
harmonic generation, where k = 2k, since then the phase factors disappear and the 
interference between the signals from different molecules is constructive. This. 
corresponds to forward phase-matched emission of the second harmonic. The 
essentially quadratic dependence of the emission rate on N means that for high 
intensity the coherent contribution far outweighs the incoherent, and the rate of 
harmonic conversion is effectively given by 

(10.7) 

This result can be re-expressed in terms of physically measured optical quantities to 
give the following expression for the radiant intensity IsHG of second-harmonic 
generation: 

8-A 

(10.8) 

where I is the irradiance of the pump laser and g(2)  its degree of second-order coherence 
(8.13). 

A number of significant features emerge from an examination of the structure of 
(10.8). First, it is clear that, since the hyperpolarizability itself vanishes in any 
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Molecular QED in chemical physics 361 

centrosymmetric molecule, SHG cannot be supported in any medium composed of 
molecules of this type. This simply reflects the fact that an odd number of electric dipole 
transitions cannot connect two molecular states of the same parity, as the initial and 
final state for SHG necessarily are. The second implication is that SHG cannot occur 
within any fluid medium that has macroscopic isotropy. The proof of this is less 
straightforward, and is somewhat obscured in the classical description of harmonic 
generation. The result essentially arises from the fact that the isotropic parts of both the 
hyperpolarizability tensor and the third-rank polarization tensor 2 iejek vanish. Similar 
remarks apply even when higher-order multipolar contributions are considered. 
Consequently the rotational average in (10.8) is zero, and coherent harmonic emission 
is thus forbidden in isotropic fluids (Andrews and Blake 1988). The result has 
interesting practical implications, since it facilitates the use of SHG as a surface-specific 
probe. For this reason harmonic generation has become an important tool for studying 
the chemistry of interfaces (Shen 1984). 

Although SHG is normally forbidden in isotropic media, the application of a static 
electric field can remove the forbidden character of the process by two distinct 
mechanisms. These relate closely to the two transition routes for electric-field-induced 
absorption discussed in section 9. In the first mechanism the static electric field induces 
an electro-optical contribution to the harmonic signal at the molecular level. This 
contribution is calculated using fourth-order perturbation theory with the aid of time- 
ordered graphs of the kind shown in figure 9. By this mechanism, SHG becomes 
allowed both in centrosymmetric crystals and in fluids. The second mechanism applies 
to fluids consisting of polar (and thus necessarily non-centrosymmetric) molecules. 
Here the electric field removes bulk isotropy by inducing a degree of molecular 
alignment, governed under equilibrium conditions by the Boltzmann distribution law. 
In contrast with the result (10.8), application of a static field thus produces a radiant 
second-harmonic intensity 

(10.9) 

Here the correction term involving the fourth-rank tensor Xijkl  represents the local 
electro-optical interaction, and the angular brackets now represent an orientational 
average weighted by the Boltzmann factor y, defined by (9.1 l), for the energy of dipole 
coupling with the local electric field. The full structure of the result including the form of 
the tensor xijkl is given elsewhere (Lam and Thirunamachandran 1982, Andrews and 
Sherborne 1986). 

(k.h) (k,M 

Figure 9. Typical graph for field-induced second-harmonic generation. 
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362 D. L. Andrews et al. 

Here it is appropriate to draw out a few salient features of the dependence of SHG 
intensity on experimental variables. These are principally the laser polarization, electric 
field strength and temperature. Under normal low-field conditions where y << 1, the 
harmonic intensity may be expressed. by the following leading terms in a Taylor series: 

Here p1 and p 2  are polarization parameters given by 

p = (5’ - e)(e * 6), 
p z  = (6’ * D)(e * e). 

(10.11) 

(10.12) 

Clearly the harmonic signal disappears entirely when the static field is applied parallel 
to the pump beam; this remains true even when all higher orders in the Taylor series are 
considered. It is therefore normal practice to apply the field perpendicularly, and the 
conversion efficiency can be maximized with a spatially periodic field (Shelton and 
Buckingham 1982). Selective temperature measurements in different geometries allow 
direct evaluation of the parameters xAnp,, xnPpA, Bl,+ and BAl,,pa. Such parameters 
provide significant information on molecular electronic properties such as the extent of 
delocalization in extended conjugated species (Chemla and Zyss 1987). 

11. Resonance interaction 
In a system of two identical molecules A and B, with excited states IE;) and IE;), 

the product states IE;, EE) and lE& EE) are equal in energy; they are interconverted by 
excitation exchange. They may be used to form stationary states, which are 

2-1’2(lE;, EE) k IE;, E;)), (11.1) 

2(EjZ, EtIHintIEk, EE), (11.2) 

with an energy splitting equal to the real part of 

Hint being the intermolecular coupling operator. The familiar exciton splitting 
measured in molecular crystals is a sum of (1 1.2) over a lattice of identical molecules 
(Craig and Walmsley 1967). If time is too short to reach a stationary state then let, EE) 
is non-stationary and may decay either by transfer of energy to its partner or by photon 
emission (fluorescence), leaving both molecules in their ground states IE;, EE). In the 
former case the rate of energy transfer (Forster rate) may be characterized by a lifetime 
when there are many identical systems into which IE;) may transfer energy and when 
the corresponding energy levels are spread over a range of energy by solvent 
perturbation. There are also cases that are intermediate between stationary states and 
exponentially decaying states. 

This simple description can be framed accurately in QED, and shown to be related 
in all cases to the primitive processes of photon absorption and emission, not only in 
the fluorescence limit. We noted earlier that in the multipolar formalism the coupling 
between two neutral molecules is mediated by transverse photons. The coupling matrix 
element can be calculated with the aid of time-ordered diagrams. If A is the molecule 
initially excited then the time-ordered diagram (a) in figure 10 contributes a term 
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A 0 A 0 

(4 (4 

Figure 10. Graphs for resonance coupling. 

corresponding to emission from A followed by absorption by B. Diagram (b) applies to 
the time sequence in which the first event is virtual emission by B and excitation of it to 
IE:). We note here an important difference from virtual processes in one-centre cases 
such as two-photon absorption (section 8). In applying the uncertainty relation 
AE At -4 h in a one-centre example, At is the time interval for the excitation of the atom 
or molecule. This is a time so short that AE becomes much larger than the transition 
energies, and ail virtual processes are feasible. For two-centre problems the time At 
within which the photon energy is transferred is determined in a different way, namely 
by the photon transit time from A to B at the speed of light. At an A-B spacing of 1 nm 
we find AE N 2-4 x lot6 Hz, or 8 x lo5 an-'. Energies far in excess of Em, can thus be 
borrowed from the vacuum for the similar process in diagram (b); even at lOnm 
(AE - 8 x lo4 cm- ') the same is true. However, at about 40 nm (b) could not contribute. 
The photons in diagram (b), and the transitions at the vertices, are possible through this 
energy borrowing and are virtual. We now go back to diagram (a), noting that the same 
argument applies. The contribution is a sum over all frequencies, real and virtual, but 
here there is the difference that one frequency is exactly resonant with the transition 
frequency Emo/h. The two diagrams in figure 10 apply to the case where A is initially 
excited and they describe energy transfer from A to B. The matrix element Mfi for this 
process is complex, and the transfer rate is found from the Fermi rule 

(11.3) 

with p the density of states, namely the density of radiation field states in the vicinity 
of the transition energy Emo. The transfer matrix element is given by (11.4) (Power 
and Thirunamachandran 1983, Andrews and Sherborne 1987, Craig and 
Thirunamachandran 1989): 

(11.4) 1 
M f i  =Tp~m(A)pYo(B)[Bij(l -ikR)-ctijkZR2] exp (ikR), 47CEoR 

where 

(11.5) 

(11.6) 
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364 D. L. Andrews et al. 

Here pmo is the dipole transition moment connecting the levels M and 0, k is the 
wavenumber and R is the separation distance. The significance of bij and aij may be 
seen as follows. In the small-R limit (the near-zone limit) the expression (1 1.4) reduces to 

(11.7) 

We recognize this as the expression for the electrostatic dipoledipole interaction 
energy; f i i j  describes a coupling of both longitudinal and transverse components. At 
large enough R (the far zone) the matrix element (11.4) becomes 

p~m(A)p~o(B)aij exp (ikR). 
k2 -- 

4REoR 
(1 1.8) 

We see that the components of pmo along the molecular join make no contribution to 
the coupling energy. The dyadic aij is purely transverse. The interaction (1 1.4) is due to 
the electric vector at A as a radiation source acting on the transition dipole at B. 

The rate of energy transfer found from the Fermi rule (1 1.3) together with (11.4) for 
the matrix element is 

(11.9) 

The conditions of validity of this expression are restricted. It applies over times T for 
which h/lMfil <<z<<T- '. The second inequality implies that the interval must be limited 
to the early stages of decay over times much less than the decay lifetime r-'. The first 
inequality implies that z must be much greater than the characteristic period of 
excitation exchange between the resonating pair, as determined by the coupling 
between them. That is, the decaying system must be quasi-stationary over the period of 
observation, and must decay only by a small fraction of its initial population. As an 
example, let us suppose that two molecules in resonance have a coupling matrix 
element of energy equivalent to 100 cm- '. The characteristic period of energy exchange 
is 3 x 10- l 3  s. If the pair excitation is decaying only by fluorescence then the lifetime of 
about 10-9s calculated by the Fermi rule is valid over, say, the first 10% of decay. 
However, where the matrix element is very small, say cm-', we can say that the 
excitation transfer period from A to B is slow compared with the de-excitation of A by 
fluorescence. In that case the Fermi rule applies to the decay of excited A, not the decay 
of the resonating pair. 

There are other interesting features of resonance transfer, discussed in detail 
elsewhere (Craig 1989, Craig and Thirunamachandran 1989). We note two only. The 
first is that the limiting long-range rate from (11.9) is 

(11.10) 

where p is the density of states of the radiation field, From its derivation we can assert 
that this is the rate of irreversible molecule-to-molecule excitation transfer driven by 
intermolecular coupling. It is at first surprising to find (Andrews 1989a) that this is 
exactly equal to a rate found by calculating the fluorescence emission by A, and then 
finding the absorption of the emitted light by B, viewed as two uncorrelated processes 
with no direct A-B interaction. 
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Molecular QED in chemical physics 365 

Inasmuch as in the wave zone the transfer rate for the one-to-one interaction of 
identical systems is the same as the rate for independent processes of spontaneous 
emission and absorption, we see that the nature and properties of B are not relevant to 
the emission rate by A, although they determine the characteristics of the subsequent 
absorption. Equally, the presence of other B molecules does not change the emission 
rate, as is obvious. Thus in the wave zone the only states that contribute to the density p 
are states of the radiation. 

On the other hand, in the complete Fermi expression (11.9) other final states 
contribute in some cases. Whereas in the wave zone the decay rate (11.10) is 
independent of the number of absorbers, this is not true of interaction at short range. If 
we have N absorbers B, supposed not to be coupled to each other, then ( E t )  is coupled 
for energy transfer to the N degenerate states 

J E : ~ ) J E ; ~ ) .  . . ptN)  

(11.11) 

where BN denotes the Nth molecule of species B. The total decay rate is made up of 
terms for N pairwise one-to-one interactions. In the framework of (11.9) this is dealt 
with in the definition of the density of states. If the N molecules of B are in solution then 
coupling to solvent molecules will cause a range of energy displacements, and an 
ensemble molecular density pmo, can be defined. The argument can be extended to 
transfer from A to non-identical systems B, where the resonance condition applies to 
the pure electronic excited state of A and vibronic sublevels of an excited state of B. 
Both cases are examples of Forster transfer. We note the important point that in this 
case the coupling does not depend on the total Ipm0(B)1’ but only on the fraction of it 
belonging to the sublevels of B that overlap (within the linewidth) with the single level 
of A. 

Secondly, there is the connection expected from the correspondence principle 
between the decay rate of an excited system calculated by quantum mechanics and the 
classical rate of energy loss from an oscillating dipole in an antenna. We readily find the 
power loss through a spherical surface surrounding an excited molecule to be 

(1 1.12) 

which is the product of the Einstein A-coefficient and the energy quantum hck. The 
classically calculated power loss from a dipole antenna with moment p, via the 
Poynting vector 

S = E,C’(E x B), (11.13) 

is 

ck4 
12lrSO IP12, p =- rad (11.14) 

where 

P = r’p(r’)d3r‘, s (1 1.15) 
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366 D. L. Andrews et al. 

p(r') being the charge density. The rates (1 1.12) and (1 1.14) are equal if the classical p is 
twice as large as the dipole matrix element p. This relation can be shown to hold for the 
harmonic oscillator. 

Finally, for a radiating dipole the Poynting vector shows an r-' dependence. That 
this must be so can be inferred from local conservation of energy (Lorrain and Corson 
1970, p. 604), since the energy flow through a spherical surface must be independent of 
the radius. The inverse-square dependence is in accord with the limiting transfer 
rate (11.10). 

12. Resonance interaction relayed through a third molecule 
In many practical cases, such as energy transfer in a fluid medium, the two identical 

molecules A and B are in a solvent consisting of molecules C or are in solution together 
with other solutes. In a macroscopic description of the resonance coupling of A and B 
the effect of a solvent is taken care of through the use of the solvent permittivity E in 
place of the vacuum permittivity go in the near-zone dipole coupling (11.7). Thus we 
have 

(12.1) 

The problem discussed in this section is the connection between the macroscopic 
model, namely that of coupled molecules immersed in a dielectric medium, and the 
microscopic theory in which interactions between A and B are relayed through the 
individual molecules C that make up the medium. From the latter point of view the 
effect of the medium is an average over a large number of three-, four- and many-body 
terms A-C-B, A-C-C-B and A-(C),-B. Every molecule is individually included, and 
each interaction has the vacuum permittivity At low densities, in the macroscopic 
picture, E exceeds by a very small quantity only. In the microscopic picture the direct 
interaction (12.1) is accompanied by interactions through C, as in AX-B, which we 
now consider. 

In QED the time-ordered diagrams for a three-body resonance interaction process 
are illustrated by a typical graph (a) in figure 11. In this graph A is initially in an excited 
state IE;). Photon emission excites C to one of its states lc), and in a further step B is 
left in excited state IE:). Overall, excitation has been transferred from A to B. The states 
of C that enter as intermediate states are summed over, and can be shown to appear 

0 

m 

A C 6 A C B 

(4 (b) 
Figure 11. (a) Typical graph for resonance coupling relayed through a third molecule. 

(b) Typical graph using effective two-photon interaction vertex. 

D
ow

nl
oa

de
d 

by
 [

M
PI

 M
ax

-P
la

nc
k-

In
st

itu
te

 F
ue

r 
Ph

ys
ik

 K
om

pl
ex

er
 S

ys
te

m
e]

 a
t 0

2:
00

 1
6 

M
ay

 2
01

4 



Molecular QED in chemical physics 367 

exactly as in the dynamic polarizability (12.4). We are thus able to replace the sets of 
diagrams referring to various states n by a small number like diagram (b), in which the 
interaction vertex is 

In the near zone the contribution to the transfer matrix element is 

(12.3) 

where R and R are the distances A-C and C-B; ak,(C; k)  is a component of the dynamic 
polarizability of C at frequency ck, 

(12.4) 

Now, since in replacing the vacuum energy for direct interaction by that for the medium 
we get an interaction reduced in the ratio &,,I&, we must verify that inclusion of the 
microscopic relayedinteraction also causes a reduction, when an average is taken over 
all orientations and positions of C. This can be seen as follows. In the three-body 
problem the molecular states are IE;, E& EE), J E t ,  EE, E )  and JE$, EE, E:), the latter 
being taken for all excited states n. The first two are the initial and final states for the 
direct resonance coupling. If for purposes of illustration we take Hint to be the near- 
zone part of the dipole-dipole coupling operator, and omit the radiation field states 
throughout, we have for the first-order corrected three-molecule state (with B excited) 

The normalization condition is 

(12.6) 

c; is the n-dependent perturbation coefficient in the second term of (12.5), and c i  is the 
corresponding coefficient in the third. The total resonance interaction is found by 
coupling (12.5) with JE;, EE, EE). The leading term is the direct coupling times the 
coefficient c i .  As the number of C molecules taking part in the interaction increases, so 
does the total contribution by indirect terms; then from the normalization condition 
(1 2.6) c i  must decrease. The direct A-B term thus becomes decreasingly important 
compared with the indirect A X - B  terms. As the direct A-B term is progressively 
replaced by A-C-B and since the averaged values of the latter are then smaller, the net 
result is a reduction of the total. The outcome in the high-concentration limit can be 
seen in principle: the direct A-B part is entirely swamped (actually entirely replaced) by 
the indirect part. In practice increasing the number of C molecules involves dominance 
by A-(C),-B terms and we cannot make a calculation valid at high concentration of C 
by perturbation theory. However, it is qualitatively apparent that the macroscopic and 
microscopic viewpoints can be harmonized. 
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368 D.  L. Andrews et al. 

13. The dispersion interaction 
In practical applications to chemical systems, and also historically, this is the most 

important form of coupling between molecules. Before quantum mechanics, the 
dispersion interaction was understood in terms of charge fluctuation in one molecule 
causing a response in the other, with a resultant energy having R - 6  dependence on the 
intermolecular separation R. One had the model that the dipole pi(A) from fluctuation 
in A, through its electric field component E j  at B, 

induced a moment in B proportional to the polarizability, 

with an associated energy shift 

(13.1) 

(1 3.2) 

(13.3) 

In molecular quantum mechanics the classical fluctuations appear as virtual 
transitions in the familiar manner, and the well known expression for the dispersion 
energy, after rotational averaging, is 

(1 3.4) 

The classical expression (13.3) and the semi-classical (13.4) owe their R - 6  dependence 
to electrostatic (Coulombic) interactions valid at short distances; they reflect the 
Coulomb dipoledipole R - 3  distance law taken to second order. Although for a long 
time it had been understood that the law must be modified at distances too great for the 
propagation of electric fields to be considered instantaneous, the first correct theory 
was that of Casimir and Polder (1948), who, using the minimal-coupling Hamiltonian 
and taking complete account of retardation, obtained an expression for the dispersion 
energy valid for all separations outside the overlap region. In particular they showed 
that for large R the inverse sixth-power dependence on distance, predicted by the 
London theory, was replaced by the inverse seventh-power dependence 

(13.5) 

A 0 

Figure 12. Typical graph for dispersion interactions. 
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Molecular QED in chemical physics 369 

The R-7 dependence was later confirmed experimentally by Tabor and Winterton 
(1 969). The Casimir-Polder result was subsequently recovered using the multipolar 
form of quantum electrodynamics (Power and Zienau 1957, Craig and Power 1969). 

With the multipolar Hamiltonian, interactions between neutral molecules are 
mediated by exchange of virtual photons. Energy shifts are manifestations of the 
exchange and may be calculated using conventional perturbation theory and time- 
ordered graphs. The leading contribution to the dispersion energy is of fourth order 
in Hint: 

~ ~ l ~ i n t l ~ ~ ~ ~ ~ ~ ~ ~ l ~ i n t l ~ ~ ~ ~ ~ ~ l ~ i n t l ~ ~ ~ ~ l ~ i n t l ~ ~  A E = -  c 
I .  rr, rrr (Er--o)(E,,-Eo)(Er,,-Eo) 

(13.6) 

The second term in (13.6) arises from wavefunction renormalization. It does not 
contribute to coupling between non-polar molecules. In (13.6) the ket 10) is the 
unperturbed ground state of the system, namely JE;, EE; 0). The intermediate states are 
of four types, depending on whether neither, one or both molecules are excited and 
whether zero, one or two photons are present. Twelve diagrams contribute to the 
dispersion interaction between non-polar molecules. A typical diagram is shown in 
figure 12. The corresponding intermediate states are 

I 0  = IEf, E::; U P f ,  w, 
Im = IEf, E,” ; O), 

Irm = IE;, E:; UP, 4). 
In the electric dipole approximation for Hint we find for the energy shift 

(13.7) 

xii 

a = i  
xexp[i(p+p’)-R] O i l ,  (13.7) 

where D, is one of the denominators for the twelve diagrams. The denominator sum is 
found to be (Craig and Thirunamachandran 1984) 

(13.8) 

Virtual-photon summation is straightforward and we obtain the full Casimir-Polder 
result for a pair of freely rotating molecules: 

c Ic1r0121Psolz 1 
36n3e&R2 

A E =  - 

(13.9) 
krOksOu4 exp (- 2uR) 

0 (k& + u2)(k:o + u’) 
It has already been noted that virtual transitions are made with energy ‘borrowed’ from 
the electromagnetic vacuum subject to the energy-time uncertainty relation 
AE At 2 5 h ;  At  is the time taken for a signal to propagate from one molecule to the 
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370 D. L. Andrews et al. 

other. Large separation distances thus correspond to small values of energy that can be 
borrowed from the vacuum. In the far-zone limit, u2 in the energy denominators of 
(13.9) can be neglected in comparison with k,, and kso. The u-integral then follows 
immediately and we obtain the R.-7 result (13.5). In the near zone, kR<<l, the 
exponential in (13.9) can be set to unity and it is sufficient to retain the ( u R ) - ~  term. 
Thus 

With the identity 
m 1 

ab du, a,baO, (a2+u2)(b2+u2) (13.11) 

the near-zone result can be converted to the well known London interaction energy 

(1 3.12) 

An alternative route to dispersion interactions in QED is available in the Heisenberg 
representation. Our discussion throughout has been in the Schrodinger representation, 
in which the operators are time-independent, with the time dependence being carried 
by the state vectors. In the Heisenberg representation time-dependent operators act on 
time-independent state vectors. In the application to dispersion coupling (Power and 
Thirunamachandran 1983, Thirunamachandran 1988) Heisenberg operators for the 
electromagnetic field are calculated in the vicinity of one of the coupled pair of 
molecules. These operators, evolving in time, act both on the state of the field and on the 
molecular state. They are applied to the second molecule of the coupled pair, viewed as 
a test body, and the response of the second molecule leads to the dispersion energy. The 
results agree with those found in the Schrodinger basis. They apply at all 
intermolecular separations beyond molecular overlap. 

Finally, we discuss another aspect of dispersion interactions. This is that, when 
acting between chiral molecules, the dispersion force differs according to whether the 
two molecules have like, or unlike, handedness. This difference is referred to as chiral 
discrimination (Craig and Mellor 1976, Craig 1978). As noted in section 6, molecular 
chiral properties depend on both electric and magnetic transition moments, through 
the optical rotatory tensor with components (for a transition It)+lO))R$) = Im pYm:O, 
where m is the magnetic moment. In achiral systems no transition can be both 
electrically and magnetically allowed; hence the optical rotatory tensor is identically 
zero. Transitions in chiral systems, however, can be simultaneously electric- and 
magnetic-dipole-allowed, a property that is the origin of chiroptical properties such as 
circular dichroism, optical rotation and chiral discrimination. 

In the discussion so far we have employed the electric dipole approximation. Now 
we must relax this to take into account magnetic dipole coupling as well. We find that 
there are additional interaction energies between chiral molecules that depend on the 
relative handedness of the two molecules. The calculation of discriminatory dispersion 
energies follows the same lines as those of the Casimir-Polder energy, with the 
important difference that magnetic terms must be included in Hi,,; 

(1 3.1 3) Hint = - E; 'p(A). d(RJ- E; p(B)- d(R,)- m(A) * b(R,)- m(B)- b(R,). 
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The time-ordered graphs are also modified by replacing one of the electric dipole 
interaction vertices at each centre by a magnetic dipole interaction vertex. Details of the 
calculation may be found elsewhere (Craig 1978, Craig and Thirunamachandran 1984). 
We present here the results for the two asymptotic limits. In the far zone the 
discriminatory dispersion energy is 

(1 3.14) 

where Rr0 and RSo are the rotatory strengths (equal to the diagonal sums of R$' above) 
of transitions Ir)+lO) and Is)+lO) in molecules A and B. Since rotatory strength is a 
pseudoscalar, it is evident that (13.14) changes sign when one molecule of the pair is 
replaced by its enantiomer. 

In the near zone the chiral discriminatory interaction energy (Mavroyannis and 
Stephen 1962, Craig et al. 1971) is 

(1 3.15) 

Again the pseudoscalar nature of the rotatory strength is responsible for the 
discriminatory property. The form of (1 3.1 5) is similar to that of the London expression 
(13.12) except that the squared moduli of the electric dipole moments are replaced by 
rotatory strengths. It should be noted that, although the London interaction is always 
attractive, the discriminatory interaction can be either attractive or repulsive. 

14. The two-centre model for circular dichroism 
Circular dichroism is a property of chiral molecules. It can be described in terms of 

the electric and magnetic transition moments for the associated molecular transition 
(section 6). In an important set of special cases the low-frequency optical properties 
arise in two (or more) well separated chromophoric centres A and B, held by a rather 
rigid but spectrally inactive framework. Circular dichroism can then be discussed in 
terms of the properties of these centres, and of the coupling between them via their 
individual transitions. There are particular cases of interest where chiral behaviour 
appears through the coupling of centres that are locally achiral, as for example keto 
groups in a diketone. The classic illustration is the coupled-oscillator model for optical 
activity, in which the dissymmetric juxtaposition of two achiral chromophores leads to 
phenomena associated with chirality of the pair (Kirkwood 1937, Buckingham and 
Stiles 1974). The overall molecular symmetry must be chiral, with implied constraints 
on the rigidity of the framework maintaining the relative positions and orientations of 
A and B. 

In another type of two-centre interaction, to be discussed in the next section, 
coupling is between two molecules, one of which is achiral (A) and the other chiral (C). 
Typically the chiral molecules are the solvent in which A is dissolved. Here the coupling 
can cause chiral properties to appear in the achiral species, for example circular 
dichroism at a transition of A. This is molecule-induced circular dichroism. 

In the two-centre model for circular dichroism the optical response of each centre is 
effected through its electric transition moment. The spatial displacement of the electric 
dipoles at the two centres causes a differential response to right- and left-handed light. 
In the one-centre model, where the molecule is dealt with as one entity, the response 
involves both electric and magnetic dipole moments of the molecular transition. 
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0 

0 A 
i 

Figure 13. Graphs for two-group circular dichroism with no coupling between the two groups. 

The simplest case is the circular dichroism of a pair of identical chromophores A 
and B. The molecular skeleton simply keeps the relative orientations of the 
chromophores locked. We may suppose that the transition of interest connects the 
initial state 

I0 = lE$, E:; n(k, L/R)), (14.1) 

with a final state 

If*)=2-'/2(lEt,E:) kIE$,E:))l(n-- lXk,L/R)). (14.2) 

The states 2- '"(IE;, E:) & JE$, E:)) can be split by resonance interaction (section ll), 
and the spectrum should in general feature a doublet. The leading contribution to the 
matrix element for the transition Iflt)+li) is found from the graphs in figure 13. We 
have 

M&'R)(+_)=2-1/2[((~- l)(k,L/R);EA,I-E,'p(A)*d(RJE$;n(k,L/R)) 

k ((n- L/R); E:I -ti 'fiB)*d(RB)IE:; n(k, L/R))], (14.3) 

leading to the differential absorption rate 

x [ pyo(A) kexp (- ik R) pyo(B)], (14.4) 
where R = IRB - R,I. After rotational averaging to take into account tumbling of the 
pair with respect to the direction of propagation of the incident beam, we obtain 

) [pm0(A) x pm0(B)] * i%, (14.5) 
9(0) coskR sinkR (rT))-(rp)= +- -2q,h2 (--- kR k2R2 

which gives differential absorption of equal magnitude but opposite sign for each 
component of the absorption doublet (Craig and Thirunamachandran 1984). The fact 
that this result arises from interference between matrix elements for absorption at A 
and at B reflects a chiral response of the pair to variation in the electromagnetic field 
over the inter-chromophore region. This dichroism must disappear if A and B can 
rotate freely relative to each other. 
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While the above result is valid for all distances, the requirement for the two 
chromophores to be held in a fixed mutual orientation means that R is normally much 
smaller than optical wavelengths, so that kR<c 1. The resuh (14.5) then simplifies to 

(14.6) 

showing a linear dependence on R. This result can be also found by treating the coupled 
A-B pair as a one-centre, inherently dissymmetric system and using the result (6.6) 
derived previously. With A as the origin, the electric and magnetic dipole moments are 

df)= 2-”2[pmo(A) f pmo(B)], (14.7) 

m( +)= T8-”’- 1 R x pF0, (14.8) 
e 
m a  

where the m u m  is over the active electrons of B. With the aid of 

ih 
Cq, &I = m P, (14.9) 

m(+) can be written as 

m(f )=  2 8-  112. I- E m 0  R x prno(B), (14.10) 
f i  

so that the rotational strength is 

Rm0( +) =Im porn( + ) a  mmo( +) 

= f &k[prno(A) x pmo(B)] - R. (14.11) 

Substitution of (14.1 1) in (6.6) gives (14.6). Clearly the rotational strength disappears if 
the two transition moments are parallel or if either is aligned with the R-vector. The 
circular dichroism is almost zero if the two states Ifk) are nearly degenerate, since the 
total differential absorption rate is the sum for the two transitions If*)+li). For such 
cases higher-order contributions containing virtual-photon exchange between the 
chromophores need to be included, and the calculations are essentially the same as 
those for nonidentical chromophores, which we now consider. 

If A and B are different, with different transition frequencies, only one of the 
diagrams similar to figure 13 can contribute to the transition. Thus there is no 

0 m~ 

0 

r 

A B 

Figure 14. Typical graph for two-group circular dichroism with coupling between the 
two groups. 
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374 D. L. Andrews et al. 

interference between first-order amplitudes for absorption at each centre. The 
interference that leads to circular dichroism now is between first- and third-order 
contributions to the matrix element. 

Let us consider the transition I m ) t  10) of chromophore A and calculate the circular 
dichroism arising from the coupling with B. We have for the initial and final states 

(14.12) 

(14.1 3) 

The leading contribution to the matrix element, denoted by M4/R, comes from the first- 
order term in (2.14), and is represented by a time-ordered diagram similar to that of 
figure 13 (a). Terms for the third-order perturbation MilR also contribute, and involve 
virtual-photon coupling. Six time-ordered diagrams of the type shown in figure 14 
contribute. The total matrix element is then a sum 

(14.14) Mk/R=Mf"'+ Mi"'+. . . , 
where 

X- 1 [pij(l -ikR)-aijk2R2] exp(ikR). 
4n&,R3 

(14.15) 

(14.1 6) 

In (14.16) a(B) is the dynamic polarizability of B, already defined by (12.4); aij and pij are 
the coupling tensors already defined by (1 1.5) and (1 1.6). The absorption rate given by 
the Fermi rule may be written as 

r(L/R) -2T - ~ (lM4/R12 + 2 Re M?/"@/"+. . .). (14.17) 

For an achiral A the first-order term in (14.17) does not lead to circular dichroism. The 
leading contribution to circular dichroism arises from the M 1 M 3  interference terms, 
and, after performing a tumbling average for the pair, we obtain 

where 

W,,(k, R) = (fla,[2kR cos 2kR + (k2R2 - 1) sin 2kR] 

+ aA,[k2R2 sin 2kR - k3R3(l + cos 2kR)l). (14.19) 

In the near-zone (kR << 1) the first factor of the PA, term dominates and an overall 
R - dependence follows (Craig and Thirunamachandran 1984). 

15. Molecule-induced circular dichroism 
In section 7 we noted that chirality may be induced in achiral molecules by 

circularly polarized laser radiation. Chirality can also be induced by a chiral medium so 
that a transition of an achiral species A shows circular dichroism when A is dissolved in 
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Molecular QED in chemical physics 315 

a chiral solvent C. Here the coupling can result in the induction of chirality in A leading 
to circular dichroism at a transition frequency of A. For example, n-x* transitions in 
aromatic ketones dissolved in chiral solvents such as pinene show circular dichroism 
(Bosnich 1967, Hayward and Totty 1971). 

The time-ordered diagrams for this phenomenon are essentially the same as those in 
figure 14, but with the important difference that the interaction vertices for the chiral 
centre now include magnetic dipole coupling. This is required because A and C in 
general have no orientational correlation, and rotational averages have to be 
performed to take into account not only the tumbling of the pair with respect to the 
incident beam but also the random relative orientation of the molecules. As a result, 
any contribution associated with electric dipole-only coupling vanishes, and the 
induced chirality arises from an inclusion of magnetic dipole terms for the chiral centre. 
The calculation, though lengthy, is straightforward, and the induced circular dichroism 
for an arbitrary A-C separation distance R is (Craig et al. 1976, Craig and 
Thirunamachandran 1984) 

Yk 
1 8xh&;R3 

(ry)  - (rp) = 

(15.1) 

where 

(1 5.2) 

and R'O is the rotational strength given by (6.7). Thus ~ ( k ,  C) represents the complete 
chiral response of C summed over all its absorption bands, but weighted towards bands 
of frequencies closest to the absorption frequency w( = ck) of A. For kR << 1 the result 
(15.1) varies as R-' and thus falls off comparatively slowly with intermolecular 
distance. The dependence is R -  rather than R - 3 ,  the expected dependence of the 'true' 
static limit, because in this limit there is no coupling between the electric dipole 
transition moment of A and the magnetic dipole transition moment of C. 

It is of interest to note an alternative route to (15.1). Instead of using the coupling of 
electric and magnetic moments with the displacement vector and the magnetic fields as 
the primary interaction operators for the chiral centre, it is possible to use an effective 
interaction operator that is quadratic in the fields. For the calculation of circular 
dichroism, the effective operator for a freely rotating molecule C is of the form 

where 
,rO ,Or. 

c(k)=? (E, ,  - hck + E,, + hck)  

= i 2hck~(k ,  C), (1 5.4) 

with x given by (1 5.2). The use of effective two-photon operators of the type (15.3) can be 
understood in terms of canonical transformations (Craig et al. 1976). With the aid of the 
two-photon operator, induced circular dichroism may be visualized as arising from an 
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376 D. L. Andrews et al. 

interference between the directly absorbed wave at A and the wave scattered by the 
chiral molecule, the interference depending on the helicity of the incident photons. 

Finally, we note that the coupling between the achiral and chiral molecules can lead 
to changes in the rotatory strengths of the chiral molecule from the free-molecule 
values. The calculations follow the same lines as above and may be found elsewhere 
(Craig and Thirunamachandran 1987). Measurements of the changes in the rotatory 
tensor should provide additional information about the coupling. The most promising 
is the application to chiral molecules isolated in a rare gas matrix, or embedded in a 
host crystal of achiral molecules. From studies of such systems it should be possible to 
learn about the directional properties of active transition moments in the chiral 
molecule. 

16. Synergistic effects in two-photon absorption 
The interaction of atoms or molecules irradiated with light of a suitable frequency 

can result in the simultaneous excitation of two distinct species. Although the first 
observations of this effect were made in infrared studies in compressed gases, recent 
studies have mostly focused on interaction-induced ultruviolet/visible transitions in 
gases and crystals. Such pair excitation involves the absorption of a single photon. 
Laser excitation provides the means for observing nonlinear optical effects in which 
two or more photons are absorbed by a pair. Such a process was predicted by Rios 
Leite and De Araujo (1980) in a paper concerned with cooperative absorption by atom 
pairs in solids. However, the first observation, made shortly afterwards by White (1981), 
came from laser excitation studies of gaseous mixtures of barium and thallium. Atoms 
of both species were found to be simultaneously promoted to excited states by a 
concerted process involving the pairwise absorption of laser photons. 

Recently, a new type of synergistic photoabsorption involving two-frequency 
excitation has been the subject of theoretical interest (Andrews and Hopkins 1987, 
1988a, b). Here the two chemical centres that undergo concerted excitation may or may 
not be chemically similar, and can represent either distinct chromophores within a 
single molecule, loosely bound systems such as van der Waals molecules or solute 
particles within a coordination shell of solvent molecules, or else completely separate 
molecules. In the most general case the two centres A and B undergo a concerted 
excitation through the absorption of two laser photons hw, and ha2, and represented 

A + B + hw, + hwz+A* + B*, (16.1) 
by 

subject to energy conservation 

E,, + E,, = ho, + hy . (16.2) 

It is assumed that both molecules A and B are initially in their ground states, and that 
they are promoted during the absorption process to excited vibronic states denoted by 
the asterisks in (16.1) and a and /? in (16.2). 

Synergistic two-photon absorption can in principle take place by one of two 
mechanisms, where either (i) each laser photon is absorbed by a different centre (the 
cooperative mechanism; Andrews and Harlow (1983)), or (ii) both laser photons are 
absorbed by a single molecule (the distributive mechanism; Andrews and Harlow 
(1984)). In each case the energy mismatch for the molecular transitions is transferred 
between the molecules by means of virtual-photon exchange. The result, however, is a 
significant difference in the selection rules applying to the two types of process. 
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In the cooperative case the two molecular transitions are separately allowed under 
standard two-photon selection rules, since each molecule absorbs one laser photon and 
either emits or absorbs a virtual photon. In a similar manner the distributive case 
provides for excitation through three- and one-photon allowed transitions, and may 
thus lead to excitation of states that are formally two-photon forbidden. Since on the 
whole these processes are of most interest for molecules of high symmetry, it can safely 
be assumed that in most cases one mechanism alone is involved in the excitation to a 
particular pair of excited states. 

The initial and final states for the process are represented by 

li) = IEt, G; n,(k,, 41, n,(k,, A,)), 
If> = IJ%, $ ; (ni - 1Xki, A i l  (nz - 1Xkz, A,)), 

(16.3) 

(1 6.4) 

where the sequence in the ket denotes: lthe state of A, the state of B the number of 
photons in beam 1, the number of photons in beam 2). The complete set of interaction 
sequences incorporated in the fourth-order term for Mfi is accounted for by 96 time- 
ordered diagrams, 48 of which are associated with the cooperative mechanism and 48 
with the distributive mechanism; examples of each type are shown in figure 15. Of the 
distributive type, 24 diagrams correspond to the case where both real photons are 
absorbed at centre A, with a virtual photon conveying the energy mismatch to B; the 
other 24 correspond to the case where both real photons are absorbed at B, together 
with virtual photon exchange between A and B. The addition of all 96 matrix element 
contributions gives the complete fourth-order result for Mfi. 

The matrix element for the absorption may be expressed in terms of the molecular 

(16.5) 

Figure 15. Typical graphs for two-photon absorption by two interacting centres: (a) represents 
cooperative absorption, (b) distributive absorption. 
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where the first two terms arise from the cooperative mechanism and the last two from 
the distributive mechanism. In (16.5) R A  and RB are the position vectors of A and By and 
R = R B  - RA; the tensor V,, is the retarded resonance dipoledipole coupling: 

The explicit form of the second-rank molecular response tensor is 

(1 6.6) 

(16.7) 

This tensor is the same as the electronic Raman scattering tensor for the Raman 
transition 1f)tlO). The third-rank molecular tensor x :g is defined by 

p y p y p p  p yprp;o + 

There are four specific cases of bimolecular mean-frequency absorption that are of 
special interest. These are distinguished by the type of mechanism (cooperative or 
distributive) involved, and whether the photons absorbed have the same or different 
frequencies. The latter condition is in most cases determined by whether a single laser 
beam or two laser beams are employed for the excitation. 

We first consider the single-beam cases. Here the two absorbed photons have the 
same frequency, and it is the synergistic interaction between two non-identical centres 
that is of interest. This interaction provides the mechanism for energy exchange such 
that an overall process 

A + B + 2hw-tA* + B*. (1 6.9) 

can take place even when theindividual transitions A * t A  and B * t B  are forbidden on 
energy grounds. From a phenomenological viewpoint, the process evidently has the 
characteristics of mean-frequency absorption. For this effect to be experimentally 
observable, o must be chosen to lie in a region where neither A nor B displays 
absorption, and we thus have 

ho =+(-%o + Eflo), (16.10) 

h a  z Eao, Eflo. (16.1 1) 

So, for two chemically distinct molecules or chromophores A and B, with well 
characterized vibronic excited states a and jl, a proximity-induced two-photon 
absorption process can be effected by tuning the exciting laser to a frequency equivalent 
to a mean of the frequencies for the two transitions. 

In fluid phases it is necessary to take account of molecular tumbling on the 
absorption rate. Two distinct cases arise. In the first the relative orientation of the two 
centres A and B is fixed, but the A-B pair is free to tumble with respect to the laser 
beam. The result thereby obtained is applicable to van der Waals molecules and to 
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polyatomic molecules in which A and B are independent chromophores. For single- 
beam cooperative two-photon absorption by a rotating pair the rate expression is 

x [(41e el2 -2)S~(~)S~~(o)~~~(o)~~(o) 
-(le. el2 - 3 ) S ~ , " ( 0 ) S ~ ~ ( 0 ) ~ ~ ( 0 ) ~ ~ ( w )  

-(le * el2 - 3)~~,"(o)~~:O(o)~~(o)~~(o)], (16.12) 

where the angular brackets around TlC signify the averaged result. The polarization 
product e e takes the limiting values of zero for circularly polarized light and unity for 
plane-polarized light. Where the two molecules involved in the interaction are free to 
take up any mutual orientation, a further average is required to take account of the 
random relative orientation of the two molecules. The final result displays precisely the 
same change from near-zone R - 6  to far-zone R-' behaviour mentioned earlier in 
connection with resonance energy transfer (cf. (1 1.9)). The results for single-beam 
distributive absorption are much more complicated because of the interference of 
radiation phase factors. 

In the other cases of interest the two centres have identical chemical composition 
and are excited by the absorption of two different photons, as for example from two 
different laser beams with frequencies w1 and 02. This process can be represented by 

A +  A + h a ,  +hw2-+A* +A*. (16.13) 

Again, for the synergistic process to be observable, the frequencies w1 and o2 must be in 
a region where single-photon absorption cannot lead to the excitation of either centre. 
Thus we have 

Z(hOl+ 1 = Em,, (1 6.14) 

hw,,hw2#EaO. (16.15) 

The relation (16.14) indicates that this cooperative process again has the characteristics 
of mean-frequency absorption: here, however, it is the molecular excitation frequency 
that is equal to the mean of the two photon frequencies. Detailed results for these other 
cases are appreciably more complicated, owing once again to interference between 
matrix element terms having different radiation phase factors. As in the single-beam 
case, the same forms of limiting near-zone and far-zone behaviour ensue. 

Interesting differences between the cooperative and distributive mechanisms arise 
in connection with the extent of the near zone, however, especially when the excited- 
state energies are large but similar. Figure 16 illustrates this point with a log-log plot of 
the general function Kj(ck, R)Fj(ck, R) that occurs in the fully averaged rate 
expressions. The upper curve is plotted for a value of k = 1.6 x lo7 m-', corresponding 
to distributive conveyance of an electronic energy E,, with a wavelength of about 
400nm. The lower curve with k = 8  x lo5 m-' corresponds to the cooperative 
mechanism where only an electronic energy difference (nominally &E,,) is conveyed; 
here the difference equates to a vibrational energy with a wavenumber of around 
1250 cm-'. At short distances the two graphs are indistinguishable and display the 
near-zone R - 6  dependence. However, the extent of the near zone for the former case is 
much shorter, with the limiting far-zone R-' behaviour already established at 
R = 1 pm; for the latter case far-zone behaviour obtains at R = 10 vm. The result of 
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I I I I 

I nm 10nm 100nm Iym IOym 

Figure 16. Typical log-log plot of excitation transfer against intermolecular separation. 

this difference is that the long-range rates (which vary with k4) differ by a factor of 
204 = 160 O00 in favour of the distributive mechanism, where selection rules permit 
(Andrews 1989b). 

The explicit characterization of synergistic single-beam two-photon absorption has 
recently been described by Fajardo et ul. (1988) in connection with a study of laser- 
induced charge-transfer reactions in solution. Here a clear distinction from the effects of 
any sequential absorption has been made on the basis of kinetic considerations, and it 
has been shown that the synergistic two-photon absorption mechanism satisfactorily 
accounts for all the experimental observations. 

While the effects of interest are readily studied by specifically designed two-beam 
laser experiments, the mechanism involved may play a significant role in other 
photoabsorption processes where optical nonlinearity is not immediately apparent. 
This is particularly the case in connection with studies based on white or broadband 
light, and the effects may be manifest in the appearance of anomalous features in the 
corresponding absorption spectra, especially those obtained using ultrashort laser 
pulses (Andrews 1988). 

Consider a single-photon optical transition If)+ li). When observed with 
broadband radiation, it is possible to induce this transition in two molecules by 
synergistic absorption. For cooperutioe absorption two photons with frequencies 
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w = wo + 8 and w’ =ao - 8, the sum of whose energies is equal to the sum of the If)+ li) 
transition energies for two different molecules, are absorbed m the concerted process. 
The rate of cooperative absorption by the pair is 

where 

K2,(w0, 8)= (eiejS:((wo + 8 ) S ; ( o o  - Q)[V,,(B, R) + K,(S, R) exp(i Ak R)]?. (16.17) 

and Ak= k, - k,. In the distributive mechanism two photons with frequencies wo + 8 
and wo - 8 undergo concerted absorption at the same centre, and the energy mismatch 
E,, is conveyed to another molecule by virtual photon coupling. For this case the 
following rate expression is obtained 

(16.18) 

where 

K ~ d ( ~ o , 8 ) = ~ e i e j ~ ~ j ) ~ ( ~ o + 8 , ~ o - 8 ) ~ f i ~ ~ ( ~ o ,  R)[1 +exp(iu - R)]I2, (16.19) 

with u = k, + k,. The Beer-Lambert exponential decay law for conventional single- 
photon absorption results from the elementary relation 

(16.20) 

where z is the distance the light has travelled through the sample, which is directly 
proportional to the transit time within the sample. When intense continuum light is 
absorbed, however, cooperative and distributive processes produce a correction term, 
which necessitates the replacement of (16.20) by a result of the form 

where K = K,, + KZd. The dimensionless parameter x is defined by 

(16.22) 

whose typical value is not far away from unity. Clearly in this case exponential decay is 
no longer to be expected. Although other sources of optical non-linearity can 
contribute further correction terms to (16.21), these are all associated with higher 
powers of the beam intensity. 

A significant implication of this result is that an absorption spectrum measured 
with intense white light may be significantly different from the spectrum that would be 
observed using tunable monochromatic radiation. In particular, there should be a 
decrease in the apparent width of many lines in any absorption spectrum measured 
with broadband radiation. This is because for a transition of frequency wo photons of 
appreciably off-resonant frequency oo 8 can be cooperatively absorbed and result in 
the excitation of two separate molecules, provided that selection rules permit. In 
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conclusion, not only intensity-dependent lineshapes or extinction coefficients but also 
the appearance of ostensibly extraneous spectral lines may all be attributable to the 
effects of synergistic two-photon absorption. 

17. Conclusion 
The growing importance of molecular QED in chemical physics rests as much on 

the physical insight that it provides into processes and mechanisms as on the 
convenient and straightforward calculations of matrix elements, energy shifts in 
stationary states, and rates of time-dependent phenomena. Interactions between 
molecules and radiation, and between molecules and other molecules, are 
transparently interpreted as combinations of the primitive events of absorption and 
emission of real and virtual photons in single steps. In radiation-molecule interactions 
photons are exchanged between the field and the molecule, the dynamics of both being 
taken into account. In molecule-molecule interactions the coupling is entirely 
conveyed by transverse photons, with no direct (electrostatic) term. The combination of 
good insight and convenient calculation owes much to the use of time-ordered 
diagrams, which are a powerful aid to grasping the underlying physics, with particular 
advantage in higher-order perturbations. 

Quantization of the radiation field, with the associated zero-point (vacuum) energy, 
explains phenomena beyond the reach of the semi-classical method. As new discoveries 
are made, especially in the regime of non-linear molecular response to intense laser 
radiation, the attraction of these methods becomes more evident; the trend towards 
their increasing use seems certain to continue. 
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