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In the analysis of molecular structure and local order in heterogeneous samples, multiphoton ex-
citation of fluorescence affords chemically specific information and high-resolution imaging. This
report presents the results of an investigation that secures a detailed theoretical representation of the
fluorescence polarization produced by one-, two-, and three-photon excitations, with orientational
averaging procedures being deployed to deliver the fully disordered limits. The equations determin-
ing multiphoton fluorescence response prove to be expressible in a relatively simple, generic form,
and graphs exhibit the functional form of the multiphoton fluorescence polarization. Amongst other
features, the results lead to the identification of a condition under which the fluorescence produced
through the concerted absorption of any number of photons becomes completely unpolarized. It is
also shown that the angular variation of fluorescence intensities is reliable indicator of orientational
disorder. © 2011 American Institute of Physics. [doi:10.1063/1.3556537]

. INTRODUCTION

In laser-based studies of fluorescence, it is well known
that polarization features of the emission convey rich infor-
mation on structural details of the sample, particularly in con-
densed phase molecular media. The character of emission
from each fluorescent species owes its origin to both the prop-
erties of the input light and the internal configuration of transi-
tions and energy levels. Polarization-resolved measurements
afford key information on molecular structure, and the de-
gree or extent of local orientational order.:? The elucidation
of such information is widely exploited in fluorescence imag-
ing, where the objective to secure quality, three-dimensionally
resolved images is supplemented by a scope to accurately
distinguish the location, concentration and structure of spe-
cific chromophores.’ (In this paper the term “chromophore”
is used to signify a molecular component or label that can
absorb both the light and fluoresce—the term “fluorophore”
being equally valid.) In connection with conventional (sin-
gle photon) fluorescence, such principles are well known
and widely applied across a diverse range of physical sys-
tems. Numerous studies have focused on confined, highly or-
dered materials where chromophores are held in crystalline
structures,® or samples, such as cell membranes, molecular
films or fiber, where they are less rigidly bound to a physi-
cal matrix.” 9 In such instances, the rotational freedom of the
targeted species is commonly restricted, enforcing a degree of
orientational order relative to the external structure. Whereas
polarization-derived information is often restricted to two spa-
tial dimensions, the determination of three-dimensional orien-
tation can also be explored.!' Numerous investigations have
extended the scope of such studies into the single-molecule
regime, to elucidate information that is obscured in ensemble
studies.'>'4
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An ever-increasing number of studies exploit the ad-
vantages inherent in multiphoton excitation, such as the
identification of “dark states,”! photoselection methods,'®2°
and studies on the effects of molecular orientational
diffusion?'?*—as well as the opportunities for chemically
specific imaging with unprecedented resolution. For sim-
plicity, such experiments are usually performed with a sin-
gle laser beam, although it has been recognized that the
use of two or even three beams with different optical fre-
quencies can offer additional tiers of information.?*?” Ex-
perimental applications are particularly prevalent in biolog-
ical studies, where they afford a capability for imaging to
subcellular resolution, with limited photo-damage, and with-
out any need to suppress light scattering.”>*?> One of the
most appealing features of multiphoton-induced imaging is
its adaptability, and the fact that the associated instrumen-
tation is also often well suited to additional means of sam-
ple interrogation. Commonly used, complementary modes
of measurement include second-harmonic generation, sum-
frequency generation, coherent anti-Stokes Raman scatter-
ing, and Raman spectroscopy—all are frequently combined
with multiphoton fluorescence.’®3* While three-photon mi-
croscopy in particular has been less commonly studied than
its two-photon counterpart, it is recognized that image con-
trast can be enhanced as the number of concerted photon in-
teractions increases.’> 3¢ The incorporation of additional tech-
niques can permit the visual sectioning of specific molecular
domains within bulk material, expanding the potential for ap-
plying multiphoton imaging as a tool in structural diagnostics.
Nonetheless, securing all of the orientational information that
is latent in multiphoton fluorescence is technically demand-
ing, and at present it is compromised by the lack of a complete
understanding—certainly in the case of three-photon excita-
tion studies—of how the polarization response from a fully
disordered system relates to the detailed electronic properties
of the constituent chromophores.
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This report presents the results of an investigation aim-
ing to secure a robust, thorough and comprehensive repre-
sentation of the fluorescence polarization properties gener-
ated in response to one-, two- and three-photon excitation of
molecular chromophores. The single-photon case is included
both as a means of introducing the theoretical formalism, and
to help elicit patterns of response between the different or-
ders, established subsequently. Although two-photon studies
are more common, the selection rules for three-photon ex-
citation offer the possibility of access to states that are not
amenable to one- or two-photon excitation.?*2737#! Results
established by means of an isotropic orientational average de-
termine the induced fluorescence response generated within a
fully disordered molecular environment—a complete system,
or microdomains within a complete system, in which all chro-
mophores are randomly oriented in three dimensions. It can
be anticipated that the averaged results will prove their value
in determining the random orientation limit of a dynamic
spectrum, providing a means by which multiphoton imaging
can be further developed to monitor and quantify variations
in chromophore orientation. In a system with some orienta-
tional order (for example one that is undergoing a chemical
or biological function, or responding to a controlled exter-
nal stimulus), the extent of deviation in the fluorescence re-
sponse, compared to that expected from an isotropic sample,
will quantifiably register the degree of the order.

In Sec. II, essential details relating to the theoretical rep-
resentation of one-, two-, and three-photon induced fluores-
cence are established, casting the output signals in terms of
their associated electric polarization and molecular transi-
tion moment properties through standard methods of quan-
tum electrodynamics (QED), as described in numerous texts
and reviews.***® In Sec. III, orientational averaging proce-
dures are detailed, the results of which define the fully disor-
dered limits of both the single and multiphoton fluorescence
processes. The analysis requires implementation of fourth-,
sixth-, and eighth-rank tensor averages,*’ of which only the
former two are widely documented; nonetheless their calcu-
lational principles have been deployed across a wide range
of photophysical processes, recently including coupled sys-
tems and interactions such as quantum dot assemblies,*8-4°
van der Waals dispersion energies and Casimir effects,">!
and the evolution of excitons in conjugated polymers and
chromophore aggregates.’?>* However, the complexity of the
averaging procedure escalates rapidly with the tensor rank,
and it is not surprising that eighth rank averaging has rarely
been utilized—until recently, in the context of laser-controlled
fluorescence.>* The significance, patterns and applications of
these results are discussed in Sec. I'V.

II. MULTIPHOTON FLUORESCENCE THEORY

To approach the key polarization issues, it is appropri-
ate to begin with a representation of the optical process in
its entirety, subsuming the single- or multi-photon absorp-
tion of laser input, and the emission of fluorescent radiation.
Each stage occurs with an efficiency that is determined by the
strength of coupling between the ground and relevant excited
electronic levels, dependent on the component values of the
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relevant transition dipoles or multiphoton tensors. A detailed
theoretical representation is built on the basis of parameters
delivered by quantum theory—specifically the quantum am-
plitudes (or “matrix elements,” as they are in principle deriv-
able for any specified pair of states) for the initial excitation
and for the fluorescent decay. The process efficiency, deter-
mined by Fermi’s rule, is in each case proportional to the
modulus square of the matrix element;>® the excitation and
emission events are mutually independent and in practice they
occur in a stepwise fashion. For our purposes we shall assume
the validity of a Born—-Oppenheimer separation of wavefunc-
tions and focus upon electronic transitions; the correspond-
ing vibrational energies are generally small compared to the
electronic state energy differences. Also we assume a devel-
opment through molecular states that is, typically, associated
with electric dipole transitions; the contribution from both
magnetic and higher order electric contributions is generally
insignificant. The theory that follows will provide a means for
interrogating the extent of correlation between the transition
moments associated with absorption and emission. Specific
attention will be given to the extent to which fluorescence re-
tains a directionality of polarization from the initial excitation.
To achieve fluorescence intensity results amenable to ex-
perimental application, matrix elements of the form M ; (§)
are defined for each electronic transition coupling a speci-
fied initial state, 7, and final state, f, in a chromophore &. The
output fluorescence signal, If(iﬁ) (¢), is a function of the ex-
perimentally controllable angle between the polarization vec-
tor of the incident light and the resolved polarization of the
emission, ¢, and it can be cast in general terms of the sepa-
rate matrix elements for nth order multiphoton absorption and
single-photon emission, namely M]%) (&) and My, (§), respec-
tively. Our representation allows the possibility for excited
state processes such as internal conversion, hindered rotation,
rotational diffusion, intramolecular energy transfer, etc., to in-
tervene between the excitation and radiative decay. Adopting
labels 0 and v to denote the molecular ground and initially ex-
cited energy levels, and « for the level from which emission
occurs, the intensity of fluorescence can be cast as follows:

10 @) = K™Y (1M @[ | Moo €)P). (1)
§

The fluorescence signal in Eq. (1) is thus portrayed in
terms of the physically separable efficiencies of the absorp-
tion and emission processes; the constant of proportionality
K™ is itself dependent on experimental parameters includ-
ing the nth power of the mean laser irradiance, and the degree
of nth order coherence.’® To assess the relationship between
Iéﬁ) and ¢ for a fully disordered system in which molecular
chromophores (more specifically, the transition moments as-
sociated with multiphoton absorption and single photon emis-
sion) are randomly oriented relative to the input propagation,
the angular brackets in Eq. (1) are implemented in terms of an
orientational average. First, to determine the results for one-,
two-, and three-photon induced fluorescence, it is necessary
to define the form of all associated matrix elements. Each is
derived by standard methods; the underlying principles are
introduced in a detailed description of single-photon induced
fluorescence that follows.
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A. One-photon induced fluorescence

It is expedient to concisely review the simplest, familiar
case of one-photon induced fluorescence, as it establishes the
methods to be used for the more intricate multiphoton cases
that follow. Theory for the process of single-photon induced
fluorescence is characterized by the development of two dis-
tinct matter-radiation interactions. The first describes the op-
tical excitation of a chromophore by single-photon absorp-
tion, inducing an electronic transition from the ground to an
accessible excited state configuration. The second interaction
entails molecular relaxation and photon emission, usually re-
turning the chromophore to its ground electronic state. The
associated matrix elements for each interaction determine the
overall quantum probability of both the molecular and radi-
ation states developing from a given initial state |/) of the
system (molecule + radiation) to a specified final state | F'),
progressing through real, physically identifiable intermediate
states, |R) and }R/)—the latter allowed to differ by accom-
modating any ultrafast intramolecular redistribution processes
that might precede emission, such relaxation typically mani-
fest in a Stokes shift. For the complete process of one-photon
induced fluorescence, the initial, intermediate, and final sys-
tem states are thus described as

1) = 1&0; q(p, 1)),
|IR) = |&,; (g — D(p, 1)),

T @
IR") = |&4;0(p’, 1)),

[F) = &0 1(p’, 1)),

utilizing p and A to respectively represent the wave-vectors
and polarizations of the input beam, distinct from p’ and 2/,
properties of the output fluorescence. The input mode conveys
q photons within a quantization volume that encloses the ab-
sorbing chromophore. For simplicity the state of the optical
output mode is omitted from the state descriptions of |/) and
|R) because that mode suffers no change in the intervening
(absorption) transition; equally the state of the input beam,
thereafter unchanged, is omitted from the designations of
|R’) and |F) as their coupling only concerns the fluorescence
output.

1. Initial absorption

The initial photon absorption drives evolution between
the system states |I) and |R) of Eq. (2), the photon promot-
ing an electronic transition between molecular states &, and
&,. The required matrix element for single photon absorption
emerges as

MG (&) = (& (g — D (P, M| Hin (€) [E0:q (0, 1), (3)

in which the molecular and radiation system states are cou-
pled through the interaction Hamiltonian, Hi, (£). The latter
is expressible in the following form, where u; (§) is a compo-
nent of the electric dipole operator for chromophore &;

Hi () = —gy ' 1 (8) - d-(Ry), )

using the convention of summation over repeated Cartesian
subscripts. The transverse electric displacement field operator

J. Chem. Phys. 134, 094503 (2011)

df-(Rg) at position R; acts upon the system radiation states
within the volume V as

ficpeo\ ' . .
dFRe) =) (%) i[ef” (p)a™ (p)exp(ip.R;)
P.A

—2" (p)a' P (pexp(—ip.Ry)]. )

is the unit electric polarization vector with com-
S(3)

where e('\)

plex conjugate e The electric field operator is linear in both
a and af, Wthh are the optical mode annihilation and cre-
ation operators respectively; hence each operation of diJ‘(Rg)
is responsible for either the creation or annihilation of a single
photon. Substitution of Eq. (4) into Eq. (3) deploys the photon
annihilation operator in Eq. (5), the resulting matrix element

for one-photon absorption is as follows:

fic
(q p) e('\)ul exp(ip - Re). (6)

1)
ME) = —i (3~

2. Single-photon emission

The emission engages electronic decay of the excited
chromophore and creation of a single photon into the vacuum
radiation field, the process expressed by Eq. (2) as a transition
between system states |R’) and | F'). The matrix element now
engages the photon creation operator in Eq. (5), giving

fic
Mo(£) = i (2 ”V> &*) 0

i exp(—ip" - R). (7

On substitution of the derived matrix elements for both
absorption and emission into Eq. (1), a complete expres-
sion for the signal output following single photon excitation
emerges:

1 A =A)=(0) -
]( )(¢) K(I)Z< () ( ) () ( )MI)OM(J)lXMVOM?a)>’ (8)

where the modulus squares of Egs. (6) and (7) have been em-
ployed and the product of parameters within the parentheses
of each matrix element is incorporated into the proportional-
ity constant KV, For convenience in the orientational averag-
ing procedure to be utilized in Sec. III, a new notation is now
introduced in which the products of the unit electric polariza-
tion vectors, and those of the molecular transition moments,
are each incorporated into second rank tensors as follows:

It @)=Y KV (S SuTTu) . ©)
§
where specifically S;; and S;i ; denote e( )z ( ) and eo‘) ( ).

Likewise, the molecular transition moment products de-
scribed by 7;; and T;; correspond to u/°u%* and ;%%
In these examples, and in all subsequent appllcatlons of
this notation, the last index in the electric polarization and
molecular transition tensors relates to photon emission. Equa-
tion (9) thus expresses a result that embraces, in the term
within angular brackets, the angular disposition of the chro-

mophore transition moments with respect to the input and
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output polarization vectors. In a rigidly oriented system, by
forgoing the orientational average the result would thus ex-
hibit a dependence on cos’ 1 cos’ 6, where 7 is the angle be-
tween the absorption moment and the input polarization and
0 is that between the emission moment and the fluorescence
polarization.

B. Two-photon induced fluorescence

Two-photon induced fluorescence is characterized by the
development of three distinct matter-radiation interactions—
the concerted absorption of two photons followed by one-
photon emission. The initial, intermediate and final system
states are defined as

I1) = 180:q(p. 1)),

IR) = 1&,5(q — 2)(P. 1)),
|R) = 15;0(p, 1)),

[F) = 150;1(p", 1)),

First, we focus on the matrix element for the two-photon
transition between |/) and |R).

(10)

D(p, 1) (&:(q —
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1. Two-photon absorption

The acquisition of two photon energies by the chro-
mophore, in its excitation to level &,, leads to a sys-
tem state |R). The associated matrix element entails a
progression through an intermediate system state |A), in
which one photon has been annihilated and the chro-
mophore, lacking a resonant level to match the photon en-
ergy, is accordingly in a superposition of virtual molecular
states |&,):

1) = 18059 (P, 1)),

|A) = [&:(qg — D (p, V), an

IR) = 18,:(q —2)(p, M) -
Any energy nonconserving state |A) can be sustained
as long as it is allowed by the time-energy uncer-
tainty principle—and this is reflected in a weighting fac-
tor, varying with the inverse of the mismatch energy,

in the following expression for the second-order matrix
element:

D (. VI Hin (§) [50:9 (. 1))

M2 &) = 3 (60: (¢ =2) (P, M| Hint () |&5 (g —

r

A necessary summation is made over all possible intermediate
states, as required by quantum principles. The matrix element
is developed by substitution of Egs. (4) and (5) into Eq. (12)
such that

h
MG © =q)" <—C” ) (e 3 2 +hep)”!

280 \%

SN (VARSI R (13)

Here, the quantization volume initially contains the chro-
mophore and two photons of the incident radiation; the fac-
tor of qzl/2 = [g(g — 1)]'” correspondingly arises from the
successive operations of the photon annihilation operator.
The above expression exp101ts the symmetry of the elec-
tric polarization terms e; )eSM with respect to exchange of
the indices i and j. The two dipole product contributions in
Eq. (13) relate to each of the possible time-orderings in which
the two, indistinguishable input photons can be annihilated;
the factor of 1/2 is introduced to preclude over-counting.
The above two-photon absorption matrix element can thus be
presented as

1/2
M _ ‘12/ ficp\ 6y o) w0 14
o (&) = Eya e e, (14)

12)

(Eo + 2#icp) — (E, + #icp)

where, in the above expression, bracketed subscripts denote
symmetry in the enclosed indices. The second rank molecular
response tensor oz( ) 1s defined thus:

o =5 Z(Eo,+hcp) N ). as)

Meath and Power demonstrated the importance of includ-
ing in this expression static dipole moments (which arise in
the state summands for » = 0 or v), in the case of polar
chromophores.’

2. Full process

Returning to Eq. (7), the matrix element for one-photon
emission is now deployed, and substitution of this and
Eq. (14) into Eq. (1) determines the two-photon induced fluo-
rescence signal. In the following expression the proportion-
ality constant K® contains a factor ¢, which, in general,
conveys a quadratic dependence on the intensity, and which
is also a function of the photon statistics of the input beam.
Specifically, g, = g®§?, where § is the mean number of in-
put photons in the quantization volume, and g® is the degree
of second order coherence.’® Thus we have

1(2) (9) = Z KD (S 5w Samm Tijyi Tamm) (16)

§
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here expressing the electric vector and molecular transition
moment products as third rank tensors such that S;;y and
#625) and gPe ")
and Ty signify o) u* and @} aQ”, respectively. In this
case, for an oriented sample, the dependence on emission an-
gle is again cos’d. However the dependence on input polar-
ization is considerably more intricate, being determined by
a weighted combination of cos? functions for each angle be-
tween the input polarization vector and one of a bundle of

transition moments, i.e., p*”, u'°, for each level r.

Siij correspond to e , while Ty

C. Three-photon induced fluorescence

For three-photon induced fluorescence, the initial, inter-
mediate excited and final system states are

I7) = 1505q(p, 1)),

IR) = 15 (q — 3)(P. 1)), (17
IR") = 1&4;0(p’, 1)),

|F) = [&0; 1(p', A).

There are four photon-matter interactions—one of which is
one-photon emission, again characterized by Eq. (7).

1. Three-photon absorption

For the three-photon transition between |/) and | R) there
are two distinct virtual intermediate system states, |A) and | B)
as follows:

[1) = 1&0; q(p, A)),

|A) = [&(q — D(p, 1)),
|B) = 1&:(q — 2)(p, 1)),
IR) = 16,3 (g — 3)(p, A)).

(18)

The three-photon matrix element emerges as

MYE) =Y (Eor + ficp)(Eos + 2icp))™!

r,s

X (€v3(q — 3)(P, V| Hin(8)1853 (g — 2)(p, 1))
X (&3 (g = 2)(p, V[ Hin(§)18r3 (g — (P, 1))

x (&3 (g — D@, VI Hin(§)150: g(p, 1)). (19)

Following as before, substitution of Egs. (4) and (5) into
Eq. (19) further develops the above matrix element, such that

) 2. ((ep N o oo
My (§)=—q; l<m> € ej e

1
X 2 (Eor+Hiep)(Eos+2hep))™

sr,,r0 Vs, Sr vs , sr  r0

X (1 g 4 1 + g g

vs Sr vs  Sr

Aty A W A ). (20)

the factor of 1/6 again to offset over-counting. The above re-
sult can be recast in terms of a third rank molecular response
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tensor ,B(‘;.?k), defined as

1
i = ¢ 2_[(Eor + ficp)(Eo, + 2cp)] ™

Vs, Sr sr o, r0

X (P gl 4 ey ) g

g w4 R A g ). @21
Just as for the two-photon case, the response from a polar
chromophore again yields a dependence on the difference in
ground- and excited-state dipoles.>’

2. Full process

The fluorescence due to three-photon excitation can now
be presented as

I (@) = > KD SiinSomon Tijin Tamop).  (22)
&

where K® subsumes a factor g3 = g, conveying a cu-
bic dependence on the input beam intensity and a linear
dependence on its degree of third order coherence.”® In
Eq. (22), the electric polarization and molecular transition
moments are described in terms of fourth rank tensors, where
G . _(v

Sijky and Sgjxy respectively represent e?k)ej,’\)e,({”el( )
~00 50 s ()
e el e e

and

, while T(;jxy and 7_"(,- jky correspond to ﬁ(‘;?k)u?"‘
and B /i, the final index of each again being associated
with the one-photon emission. While the index / and p con-
tractions in Eq. (22) would again deliver the cos?# factor for a
rigid sample, the orientation relative to the input polarization
depends on a multitude of angles, corresponding to the orien-
tations of the transition moments p"*, u*”, ', summed over
states r and s.

lll. ORIENTATIONAL AVERAGING

Before the implementation of a rotational average, the
general results for the fluorescence output in one-, two-, and
three-photon induced systems, represented by Eqs. (9), (16),
and (22), respectively, are applicable to systems in which the
responsible chromophores have arbitrary orientations with re-
spect to experimentally determined input and detection con-
figurations. As such, these results are directly applicable to all
ordered samples in which individual chromophores are held in
a fixed orientation, or others comprising domains with signif-
icant local orientational correlations. To address substantially
less ordered systems it is expedient to secure corresponding
results for an opposite extreme—systems of completely ran-
dom orientation. To this end, the above results are now sub-
jected to an orientational averaging protocol. One-photon in-
duced fluorescence is addressed first, highlighting procedures
within the method in detail—though the simplicity of this case
belies the significantly greater technical complexity in secur-
ing results for the higher order interactions. The latter calcula-
tions are extremely complex, and in the case of three-photon
fluorescence they are only viable by the use of the specialized,
not widely familiar techniques, as reported below.
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A. One-photon induced fluorescence

From Eq. (9), the one-photon induced fluorescence signal
exhibits an implicit sum over four separate Cartesian indices,
each of which can assume x, y, or z values with respect to
a chosen frame. The results are resolved through fourth-rank
orientational averaging. The molecular and radiation compo-
nents of the system are first uncoupled by assigning to the
latter a laboratory-fixed frame of reference, denoted by Latin
indices. The molecular transition moments within 7;; and T
are similarly referred to a molecule-fixed frame, labeled by
Greek indices, and the output signal is re-expressed:

It (@) = KD(S;; 5T Tu)
= K(I)Sij ST Too (€inl julinlis ) 23)

where the molecular and radiation reference frames are linked
through the product of direction cosines between the frame
axes, represented within the angular brackets. As the only
parameters of Eq. (23) that are now dependent on molecu-
lar orientation, the orientational average is implemented over
(€€, v 15 ), the general result for which is as follows:*’

8ijdu 4 —1 -1 83uvo
wixej,ugkvela):% 8ikdji -1 4 -1 S18uc
5il5jk -1-14 Skoa/w

(24

The above Kronecker delta functions operate on the
molecular and radiation tensors featured in Eq. (23)—for ex-
ample §;; 8y, effects tensor contractions in the radiation frame,
with S;; Sy yielding S;; Skx. All of the ensuing results are then
expressible in terms of scalar products between input and out-
put polarization components. In the commonly utilized de-
ployment of plane-polarized input laser light, the polarization
vectors are real and the scalar product of two polarization vec-
tors from the same beam is concisely summarized by

e()”) . e()tl) = 5)\)»’ + (1 - SAA/)COS(p B (25)

where ¢ is the angle between the input and output polariza-
tion vectors. The final result for the orientationally averaged

2
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fluorescence output emerges in terms of ¢ as

KO _ _
12(¢) = 0 BT + Tu 1) 3 cos’¢ — 1)

—QT;, Ty )(cos” ¢ — 2)], (26)

involving three molecular invariants, T;, TW, Ty, TM and
T;\MTM—Whose form and means of characterization, using
linear and circular polarizations, were first identified in pio-
neering work by McClain.’®> For this case of one-photon
induced fluorescence, it is further possible to express the
molecular tensors in Eq. (26) relative to the magnitude of the
molecular transition moments g"° and u**, and the angle be-
tween them, 8, such that

K(1)|,Lv0|2|ﬂ0a|2
30
x (2 cos? B)—2(cos* ¢ — 2)], (27

14 (¢1. [B) = [(Geos?ep — 1)

where the identities 75,7, = T, Ty = |10 | %% cos® B
and T;,, Ts,, = |1"°*|%|? apply. Resolving Eq. (27) for flu-
orescence components parallel or perpendicular to the in-
put polarization leads to the familiar degree of fluorescence
anisotropy for a randomly oriented sample."?> The equiva-
lent, general results for two- and three-photon induced flu-
orescence, derived in the following, have not been completely
determined before to our knowledge.

B. Two-photon induced fluorescence

The previously established averaging methods are now
applied to Eq. (16) for the output, decoupling the molecular
and radiation frames as before:

If(ii) (d)) = KQ)S(ij)k S(lm)n T()Lu)v 7_1(01:);) <€i)n£ju£kv€lazmtenp) .
(28)

Delivery of the result now requires the implementation of a
sixth-rank orientational average.*’ It transpires that the fluo-
rescence signal is generally expressible in terms of 15 molec-
ular invariants (which are distinct, though generally they are
not all linearly independent:>*©0

K _ _ _ _ _ _
2
I2(®) = ——[(Toou Ty + Toan T + Togn Ty + Towa T + Togn Tovu + TowuToww

210

+ T(Au)v T(Av)u + T(Au)u 7:(\))\)\) + T(Au)v T(vl)/t + T(MA)M T(W)f\ + T(A/A)v T(;WM"'T(MA)V T(vu)k)
x (3cos? ¢ — 1) — 2(Tonu T + TogowTosow + Touw Tiunw)(2 cos® ¢ — 3)]. (29)

Each of the above molecular invariants (the terms contracting T and Ttensors) is a scalar, expressing one particular as-
pect of the overall propensity of the chromophore to generate two-photon fluorescence. Each is expressible as a sum
of four separate terms entailing specific transition moments, for example

= 0  Ox=10 -0
Ty Topw = aan)“vaa(v/\u)“va

r0 = Vit =70

1 - vr vr 10 = Vi =F
= 3 2 (Eoy +fiep)(Eor +hep)l™" (3" i i) + 3! 'y 3!

r,i

O ~Oa
M]} MU 9

vr 10 = vF r0 = vF —fO)

+ ol WPy w4 ) i i

(30)
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094503-7 Multiphoton fluorescence polarization

in which the state labels r and 7 identify two virtual
states—which must be allowed to be different, since each ap-
pears in a separate sum. These summations preclude factoriz-
ing out the absorption and emission transition moments, with-
out further assumptions that would compromise the general-
ity of the result. It is, however, possible to redefine Eq. (29)
in a more concise form by considering index symmetry prop-
erties, since a number of the invariants are equal, for exam-
ple Touy Tww + TowuTowy + TouwnTovu + TowuTovm
= 47604 Tiuvy- In consequence, the 15 molecular invariants
in Eq. (29) reduce to just four distinct terms:

K®
[(2T(M)u T(uv)v + 4T(M)?» T(W)v)

X(3 COS ¢ - 1) - (T(A)»);LT(W)/A + 2T()\M)v T()\,u)v)
x(2cos> ¢ — 3)]. (3D

I5(¢) =

Despite the simple form of Eq. (31), it should be borne in
mind that each invariant is in fact a sum of 27 distinct prod-
ucts of components of the tensor T (since in each case the
Cartesian indices X, u, and v each can take x, y, or z values).
Moreover, each of those tensor components is in general de-
termined by combinations of transition moments that involve
a tier of intermediate levels r, that tier being in principle of
unlimited extent. The experimental determination of these in-
dividual parameters is impossible, because the above result
provides for no more than two linearly independent polariza-
tion measurements. Moreover, calculational methods cannot
assist; even the most sophisticated molecular software cannot
usually secure the necessary convergence in the sums over
states, even for relatively small molecules. However, there is
sufficient information in the result Eq. (31) to yield physi-
cally meaningful interpretations, as will be shown in the dis-
cussion in Sec. IV. The value of the present method is still
more evident in the following three-photon case; although the
procedure for securing the result has been significantly more
complex, it does in fact produce concisely expressible and
tractable results.

C. Three-photon induced fluorescence

The orientationally averaged output signal for three-
photon induced fluorescence is now considered, beginning
with the re-expression of Eq. (22) as

3 3 o =
I( )(¢) K i1 Stnnoyp Tosnyo Tzpmom

X (gi)\ejﬂzkveltrKmrgnpg(mepn) s (32)

requiring an eighth-rank average.®' In contrast to the fourth

and sixth rank orientational averages already utilized, the
general form of the eighth-rank expression, specifically ap-
plied as (£i3€ ;. lkvliclnrluplorlpy), is rarely reported ow-
ing to the extreme complexity in presenting and resolving
the matrix result. However, following the same methodol-
ogy, a general result has now been determined in which
the three-photon induced fluorescence signal is described in
terms of 105 molecular invariants. In order to present a more
manageable result, it is necessary to again exploit the index-
symmetrized form of the molecular tensors, allowing the out-
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put signal then to be expressed much more simply in terms of
just five unique molecular invariants:

3)

(3)(¢) 315 [(3T()\)~u)u T(vva)a + 6T(A)\;L)v T(;Lva)a
+67-'()L}LU))L7_-‘(MVO')O')(3 Cosz ¢ - l) - (3T()L)Lu)v T(;ura)v
27000 Tomo )3 €8> ¢ — 4. (33)

Each invariant in this case comprises a sum of 81 tensor
component products. As with two-photon induced fluores-
cence, the inherent summation over accessible intermediate
states, in this case r, 7, s, and §, precludes further simplifica-
tion of Eq. (33).

IV. DISCUSSION

The results of the above theory represent tools that can be
applied in the analysis of polarization-determined features in
two- and three-photon fluorescence from samples of consider-
able molecular complexity. By determining how either type of
multiphoton-induced fluorescence signal responds to the ori-
entation of a polarizer, it is in principle possible to distinguish
and quantify any departure from local orientational order or
disorder within a bulk sample. Key to this discrimination is
the difference in angular disposition of the fluorescence po-
larization.

In samples whose chromophores are rigidly oriented, the
fluorescence signal from an ensemble with common orienta-
tion takes the form of a cos?f distribution with respect to the
angle 6 between the emission moment and the resolved polar-
ization. On rotation of the polarizer through 180° there will be
an angle at which the signal is extinguished—both for single-
and multi-photon induced fluorescence. However, as will be
shown, the behavior from a randomly oriented sample is in
general distinctively different.

First, it is interesting to observe that the equations deter-
mining multiphoton fluorescence response, namely Egs. (31)
and (33)—also Eq. (26) for the one-photon case—prove to be
expressible in a relatively simple, generic form. In fact, the
multiphoton fluorescence output associated with randomly
disposed chromophores can be described through the follow-
ing formula:

I§(@) = K" [A™ (3 cos® ¢ — 1)

—Y™(ncos®>p — (n+ 1)), (34)

with both A®™ and Y™ representable as a sum of distinct
molecular invariants, the former featuring as a coefficient of
the second Legendre polynomial (3 cos> ¢ — 1), characteristic
of time-resolved fluorescence anisotropy. There is no angle at
which the T® term can be made to vanish. However, under
“magic angle” conditions where ¢ is 54.7°, the A™ terms do
disappear, so that the corresponding measurement should en-
able the identification, at least in relative terms, of Y.

To proceed with the more general case, it is helpful to
cast the above expression in the form

() =K™n+1-y+@y—n)cos’¢l,  (35)
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FIG. 1. Angular disposition of polarization in fluorescence produced by
single-photon absorption (n = 1): blue (ascending) curve 3y/n = 0.1; red
curve 3y/n = 1; black (descending) curve 3y/n = 3.

where K" = K ®WY®_ y = A® /Y™ The latter parame-
ter is a scalar that characterizes the relative values of the
molecular invariant groupings in Egs. (26), (31), and (33). Al-
though the precise value of y will depend on the component
values of the transition tensors, it can be shown that y is pos-
itive and limited to an upper bound of (n + 1). The graphs of
Figs.1-3 exhibit the functional form of the fluorescence po-
larization, for one-, two-, and three-photon induced fluores-
cence, over the range (0 < ¢ < m /2)—the behavior over the
next quadrant being a mirror image in the ordinate axis in each
case. Each graph shows the behavior for different values of y;
the magic angle condition cited above represents the point at
which the curves for all different values of y intersect. These
graphs appear broadly similar, though it is not in fact possi-
ble to transfer any curve to another case simply by casting
against a different scale. For each type of excitation, curves

0.1x 027 037 04r 057

FIG. 2. Angular disposition of polarization in fluorescence produced by two-
photon absorption (n = 2): blue (ascending) curve 3y/n = 0.1; red curve 3y/n
= 1; black (descending) curve 3y/n = 3.

J. Chem. Phys. 134, 094503 (2011)

are shown for 3y/n = 0.1, 1.0, and 3.0. The curves correspond-
ing to the case, 3y/n = 0.1, represent an extreme condition,
A" « Y™ characterized by strongly depolarized emission.
The curves drawn for 3y/n = 1.0 are of special interest be-
cause the fluorescence proves in each case to be independent
of the resolving polarization, a general feature that has not
been discovered before to our knowledge; this is a condition
under which the fluorescence produced through the concerted
absorption of any number of photons becomes completely
unpolarized.

The results for 3y/n = 3.0 are perhaps the most
interesting, being indicative of the statistically most likely
outcome. This condition arises when, within each of the
relevant general Egs. (26), (31), and (33), the featured molec-
ular invariants are of approximately equal value—for ex-
ample in the two-photon case, Eq. (31), when T, T
= Ty Ty = TooypTwvw = TogoTov- It is remarkable
that this condition leads in every case to AW/ T™ =y
= n, a further, previously unreported result. Here there is a
strong retention of polarization, the corresponding emission
anisotropies r = (I — I)/(I + 21,) proving to conform to
the simple formula » = 2n/(2n + 3) and yielding the follow-
ing specific values: (i) n = 1, r = 2/5 = 0.4, the familiar
result;! also (ii) n = 2, r = 4/7 = 0.57; (iii)) n = 3, r = 6/9
= 0.67. These limiting case results are in precise agreement
with the values that arise specifically when all transition mo-
ments are considered parallel, a special case previously re-
ported by Lakowicz et al.%> The correlation serves to verify
a limiting case of the present, more general results—but it
is also notable that the conditions under which such behav-
ior arises are not only associated with parallel transition mo-
ments. The same observations will result, for example if all
of the molecular transition tensor elements have similar val-
ues. It should be stressed that the above values, for physically
restricted cases, cannot be regarded as absolute maxima
anisotropies—even in the case of solution studies—because
the approximations that lead to those results will not al-
ways hold. Although similar fluorescence anisotropies can in

3yin
N
8 -

Al

o
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0.1z 027 037 0.4 0.57

FIG. 3. Angular disposition of polarization in fluorescence produced by
three-photon absorption (n = 3): blue (ascending) curve 3y/n = 0.1; red curve
3y/n = 1; black (descending) curve 3y/n = 3.
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094503-9 Multiphoton fluorescence polarization

principle be found even from fully oriented domains, samples
of the latter kind may readily be distinguished on the basis of
an anisotropy that varies with rotation of the sample itself.

In conclusion, we note that the considered cases all
satisfy the condition that the ratio of maximum and min-

imum fluorescence intensities 1% /1% lies in the interval

[0, 1/(2n+1)]. We recall that rotation of the resolving polar-
izer can entirely extinguish the fluorescence from an orienta-
tionally perfectly ordered sample or domain, although the an-

gular positions for Ir(lfn)l and I{") may of course not be at ¢ =

0 and /2. This suggests that in a general case the measured

value of I /I registered against the scale [0, 1/(2n+1)]

should represent a robust, easily determined single-value in-
dicator of the degree of disorder in fluorescence produced by
n-photon excitation.
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