47 research outputs found

    Characterization of high-temperature PbTe p-n junctions prepared by thermal diffusion and by ion-implantation

    Full text link
    We describe here the characteristics of two types of high-quality PbTe p-n-junctions, prepared in this work: (1) by thermal diffusion of In4Te3 gas (TDJ), and (2) by ion implantation (implanted junction, IJ) of In (In-IJ) and Zn (Zn-IJ). The results, as presented here, demonstrate the high quality of these PbTe diodes. Capacitance-voltage and current-voltage characteristics have been measured. The measurements were carried out over a temperature range from ~ 10 K to ~ 180 K. The latter was the highest temperature, where the diode still demonstrated rectifying properties. This maximum operating temperature is higher than any of the earlier reported results. The saturation current density, J0, in both diode types, was ~ 10^-5 A/cm2 at 80 K, while at 180 K J0 ~ 10^-1 A/cm2 in TDJ and ~ 1 A/cm2 in both ion-implanted junctions. At 80 K the reverse current started to increase markedly at a bias of ~ 400 mV for TDJ, and at ~550 mV for IJ. The ideality factor n was about 1.5-2 for both diode types at 80 K. The analysis of the C-V plots shows that the junctions in both diode types are linearly graded. The analysis of the C-V plots allows also determining the height of the junction barrier, the concentrations and the concentration gradient of the impurities, and the temperature dependence of the static dielectric constant. The zero-bias-resistance x area products (R0Ae) at 80 K are: 850 OHMcm2 for TDJ, 250 OHMcm2 for In-IJ, and ~ 80 OHMcm2 for Zn-IJ, while at 180 K R0Ae ~ 0.38 OHMcm2 for TDJ, and ~ 0.1 OHMcm2 for IJ. The estimated detectivity is: D* ~ 10^10 cmHz^(1/2)/W up to T=140 K, determined mainly by background radiation, while at T=180 K, D* decreases to 108-107 cmHz^(1/2)/W, and is determined by the Johnson noise

    Influence of Annealing on the Optical and Scintillation Properties of CaWO4_4 Single Crystals

    Full text link
    We investigate the influence of oxygen annealing on the room temperature optical and scintillation properties of CaWO4_4 single crystals that are being produced for direct Dark Matter search experiments. The applied annealing procedure reduces the absorption coefficient at the peak position of the scintillation spectrum (430\sim430 nm) by a factor of 6\sim6 and leads to an even larger reduction of the scattering coefficient. Furthermore, the annealing has no significant influence on the \emph{intrinsic} light yield. An additional absorption occurring at 400\sim400 nm suggests the formation of O^- hole centers. Light-yield measurements at room temperature where one crystal surface was mechanically roughened showed an increase of the \emph{measured} light yield by 40\sim40 % and an improvement of the energy resolution at 59.5 keV by 12\sim12 % for the annealed crystal. We ascribe this result to the reduction of the absorption coefficient while the surface roughening is needed to compensate for the also observed reduction of the scattering coefficient after annealing

    GATE : a simulation toolkit for PET and SPECT

    Get PDF
    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.epfl.ch/GATE/

    Use of the analysis of the volatile faecal metabolome in screening for colorectal cancer

    Get PDF
    Diagnosis of colorectal cancer is an invasive and expensive colonoscopy, which is usually carried out after a positive screening test. Unfortunately, existing screening tests lack specificity and sensitivity, hence many unnecessary colonoscopies are performed. Here we report on a potential new screening test for colorectal cancer based on the analysis of volatile organic compounds (VOCs) in the headspace of faecal samples. Faecal samples were obtained from subjects who had a positive faecal occult blood sample (FOBT). Subjects subsequently had colonoscopies performed to classify them into low risk (non-cancer) and high risk (colorectal cancer) groups. Volatile organic compounds were analysed by selected ion flow tube mass spectrometry (SIFT-MS) and then data were analysed using both univariate and multivariate statistical methods. Ions most likely from hydrogen sulphide, dimethyl sulphide and dimethyl disulphide are statistically significantly higher in samples from high risk rather than low risk subjects. Results using multivariate methods show that the test gives a correct classification of 75% with 78% specificity and 72% sensitivity on FOBT positive samples, offering a potentially effective alternative to FOBT

    Use of an analytical model for optimizing the design of a small-animal PET scanner with DOI capability - Size 7.4E-02 m Size 1.14E-01 m

    No full text
    The optimization of spatial resolution is a critical issue for small-animal PET scanners, and is often addressed by Monte-Carlo simulation. Analytical models, though less versatile are very fast and their simplicity allows a direct appreciation of the influence of different model parameters. The authors have developed an analytical model for multi-layer PET systems, which provides estimates of the radial and tangential resolution at different positions within the field of view. After a preliminary validation, this model was used to optimize the design of a small single-slice multi-layer PET scanner with depth of interaction capability. The authors found satisfactory agreement between the analytical model and Monte Carlo results for several scanner configurations. The dependence of the resolution on the crystal width, the number of layers, and the crystal layout was determined for a scanner with internal and external diameters at 74 mm and 114 mm respectively. Both simulation methods agreed perfectly on the influence of these parameters. In particular confirming the degree of resolution improvement obtained using multiple-layers of crystals. These results show that an analytical model can provide accurate estimates of the spatial resolution, and can be used to complement or cross-validate Monte Carlo simulations. (7 References)

    Monte Carlo simulation for the ECAT EXACT HR+ system using GATE

    No full text
    corecore