Abstract

We investigate the influence of oxygen annealing on the room temperature optical and scintillation properties of CaWO4_4 single crystals that are being produced for direct Dark Matter search experiments. The applied annealing procedure reduces the absorption coefficient at the peak position of the scintillation spectrum (430\sim430 nm) by a factor of 6\sim6 and leads to an even larger reduction of the scattering coefficient. Furthermore, the annealing has no significant influence on the \emph{intrinsic} light yield. An additional absorption occurring at 400\sim400 nm suggests the formation of O^- hole centers. Light-yield measurements at room temperature where one crystal surface was mechanically roughened showed an increase of the \emph{measured} light yield by 40\sim40 % and an improvement of the energy resolution at 59.5 keV by 12\sim12 % for the annealed crystal. We ascribe this result to the reduction of the absorption coefficient while the surface roughening is needed to compensate for the also observed reduction of the scattering coefficient after annealing

    Similar works

    Full text

    thumbnail-image

    Available Versions