22 research outputs found

    Seagrass connectivity on the west coast of Africa supports the hypothesis of grazer-mediated seed dispersal

    Get PDF
    Population connectivity influences the distribution of genetic diversity and divergence along a species range, as the likelihood of extinction or differentiation increases in isolated populations. However, there is still poor understanding of the processes mediating interpopulation dispersal in marine species that are sessile and lack planktonic life stages. One such case is the seagrass species Halodule wrightii, which produces basal seeds, although detached plants can drift. Along the tropical western coast of Africa, this species occurs in distant discontinuous habitats, raising the question of how interpopulation dispersal is mediated. The species is a key source of ecosystem functions including feeding large migratory grazers. This study aims to infer whether genetic differentiation of the seagrass H. wrightii along the western coast of Africa supports a hypothesis of predominant transportation of rafting seagrass by ocean currents, versus the hypothesis of biotic vectors of dispersal. Additional hypotheses were addressed concerning range-wide clonality and genetic diversity, assessed with microsatellite markers on populations of the west coast of Africa from Mauritania to Angola. Population genetic diversity and structure were compared with predictions from biophysical models of dispersal by oceanographic currents. The genetic data revealed low divergence among most populations, in strong contrast with predictions of very low probability of connectivity mediated by currents along the western African coastline. Moderate to high genotypic diversity showed important seed recruitment, but genetic and genotypic diversities were lower at range edges. Populations north and south of the equator were differentiated, and remarkably, so were neighboring equatorial populations despite their proximity. These results reveal independent sources of colonization of meadows in these islands, which are major habitat for migratory grazing green turtles, also supporting the hypothesis of biotically mediated seed transport. The importance of seagrass for conservation of endangered macrofauna has been widely reported; here we report evidence supporting the reciprocal role, that macrofauna protection can also plays a role in long-term survival and reproductive success of seagrass.Fundação para a CiĂȘncia e Tecnologia - FCTinfo:eu-repo/semantics/publishedVersio

    Integrating transposable elements in the 3D genome

    Get PDF
    Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link

    Effective monitoring of freshwater fish

    Get PDF
    Freshwater ecosystems constitute only a small fraction of the planet’s water resources, yet support much of its diversity, with freshwater fish accounting for more species than birds, mammals, amphibians, or reptiles. Fresh waters are, however, particularly vulnerable to anthropogenic impacts, including habitat loss, climate and land use change, nutrient enrichment, and biological invasions. This environmental degradation, combined with unprecedented rates of biodiversity change, highlights the importance of robust and replicable programmes to monitor freshwater fish assemblages. Such monitoring programmes can have diverse aims, including confirming the presence of a single species (e.g. early detection of alien species), tracking changes in the abundance of threatened species, or documenting long-term temporal changes in entire communities. Irrespective of their motivation, monitoring programmes are only fit for purpose if they have clearly articulated aims and collect data that can meet those aims. This review, therefore, highlights the importance of identifying the key aims in monitoring programmes, and outlines the different methods of sampling freshwater fish that can be used to meet these aims. We emphasise that investigators must address issues around sampling design, statistical power, species’ detectability, taxonomy, and ethics in their monitoring programmes. Additionally, programmes must ensure that high-quality monitoring data are properly curated and deposited in repositories that will endure. Through fostering improved practice in freshwater fish monitoring, this review aims to help programmes improve understanding of the processes that shape the Earth's freshwater ecosystems, and help protect these systems in face of rapid environmental change

    Microsatellite characterization in the rainbow wrasse Coris julis (Pisces: Labridae)

    No full text
    International audienc

    Mixotrophy in the deep sea: a dual endosymbiotic hydrothermal mytilid assimilates dissolved and particulate organic matter

    No full text
    Bathymodiolus azoricus mussels thrive 840 to 2300 m deep at hydrothermal vents of the Azores Triple Junction on the Mid-Atlantic Ridge. Although previous studies have suggested a mixotrophic regime for this species, no analysis has yet yielded direct evidence for the assimilation of particulate material. In the present study, tracer experiments in aquaria with13C- and 15N-labelled amino acids and marine cyanobacteria demonstrate for the first time the incorporation of dissolved and particulate organic matter in soft tissues of vent mussel. The observation of phytoplanktonic tests in wild mussel stomachs highlights the occurrence of in situ ingestion of sea-surface-derived material. Particulate organic carbon fluxes in sediment traps moored away from direct vent influence are in agreement with carbon export estimates from the surface ocean above the vents attenuated by microbial degradation. Stable isotope composition of trapped organic matter is similar to values published in the literature, but is enriched by +7‰ in 13C and +13‰ in 15N, relative to mussel gill tissue from the Menez Gwen vent. Although this observation suggests a negligible contribution of photosynthetically produced organic matter to the diet of B. azoricus, the tracer experiments demonstrate that active suspension-feeding on particles and dissolved organic matter could contribute to the C and N budget of the mussel and should not be neglected. © Inter-Research 2010.status: publishe
    corecore