316 research outputs found

    A mechanical adapter for installing mission equipment on large space structures

    Get PDF
    A mechanical attachment adapter was designed, constructed, and tested. The adapter was was included in a simulation program that investigated techniques for assembling erectable structures under simulated zero-g conditions by pressure-suited subjects in a simulated EVA mode. The adapter was utilized as an interface attachment between a simulated equipment module and one node point of a tetrahedral structural cell. The mating performance of the adapter, a self-energized mechanism, was easily and quickly demonstrated and required little effort on the part of the test subjects

    The Leeds Met Book of Resilience

    Get PDF

    Space construction system analysis. Part 2: Construction analysis

    Get PDF
    The construction methods specific to the end to end construction process for building the ETVP in low Earth orbit, using the space shuttle orbiter as a construction base, are analyzed. The analyses concerned three missions required to build the basic platform. The first mission involved performing the fabrication of beams in space and assembling the beams into a basic structural framework. The second mission was to install the forward support structure and aft support structure, the forward assembly, and a TT&C antenna. The third mission plan was to complete the construction of the platform and activate it to begin operations in low Earth orbit. The integration of the activities for each mission is described along with the construction requirements and construction logic

    The temperature dependency of Wolf-Rayet-type mass loss: An exploratory study for winds launched by the hot iron bump

    Full text link
    CONTEXT: The mass loss of He-burning stars, which are partially or completely stripped of their outer hydrogen envelope, is a catalyst of the cosmic matter cycle and decisive ingredient of massive star evolution. Yet, its theoretical fundament is only starting to emerge with major dependencies still to be uncovered. AIMS: A temperature or radius dependence is usually not included in descriptions for the mass loss of classical Wolf-Rayet (cWR) stars, despite being crucial for other hot star wind domains. We thus aim to determine whether such a dependency will also be necessary for a comprehensive description of mass loss in the cWR regime. METHODS: Sequences of dynamically consistent atmosphere models were calculated with the hydrodynamic branch of the PoWR code along the temperature domain, using different choices for luminosity, mass, and surface abundances. For the first time, we allowed nonmonotonic velocity fields when solving the equation of motion. The resulting velocity structures were then interpolated for the comoving-frame radiative transfer, ensuring that the main wind characteristics were preserved. RESULTS: We find a strong dependence of the mass-loss rate with the temperature of the critical/sonic point which mainly reflects the different radii and resulting gravitational accelerations. Moreover, we obtain a relation between the observed effective temperature and the transformed mass-loss rate which seems to be largely independent of the underlying stellar parameters. The relation shifts for different clumping factors in the outer wind. Below a characteristic value of -4.5, the slope of this relation changes and the winds become transparent for He II ionizing photons. CONCLUSIONS: The mass loss of cWR stars is a high-dimensional problem but also shows inherent scalings which can be used to obtain an approximation of the observed effective temperature. (...)Comment: 16 pages + 5 page appendix, 17+9 figures, 3+2 tables. Accepted for publication in A&

    Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response

    Full text link
    We investigate a stochastic version of a simple enzymatic reaction which follows the generic Michaelis-Menten kinetics. At sufficiently high concentrations of reacting species, the molecular fluctuations can be approximated as a realization of a Brownian dynamics for which the model reaction kinetics takes on the form of a stochastic differential equation. After eliminating a fast kinetics, the model can be rephrased into a form of a one-dimensional overdamped Langevin equation. We discuss physical aspects of environmental noises acting in such a reduced system, pointing out the possibility of coexistence of dynamical regimes where noise-enhanced stability and resonant activation phenomena can be observed together.Comment: 18 pages, 11 figures, published in Physical Review E 74, 041904 (2006

    Global existence for semilinear reaction-diffusion systems on evolving domains

    Get PDF
    We present global existence results for solutions of reaction-diffusion systems on evolving domains. Global existence results for a class of reaction-diffusion systems on fixed domains are extended to the same systems posed on spatially linear isotropically evolving domains. The results hold without any assumptions on the sign of the growth rate. The analysis is valid for many systems that commonly arise in the theory of pattern formation. We present numerical results illustrating our theoretical findings.Comment: 24 pages, 3 figure

    The Ultraviolet Spectrum and Physical Properties of the Mass Donor Star in HD 226868 = Cygnus X-1

    Full text link
    We present an examination of high resolution, ultraviolet spectroscopy from Hubble Space Telescope of the photospheric spectrum of the O-supergiant in the massive X-ray binary HD 226868 = Cyg X-1. We analyzed this and ground-based optical spectra to determine the effective temperature and gravity of the O9.7 Iab supergiant. Using non-local thermodynamic equilibrium (non-LTE), line blanketed, plane parallel models from the TLUSTY grid, we obtain T_eff = 28.0 +/- 2.5kK and log g > 3.00 +/- 0.25, both lower than in previous studies. The optical spectrum is best fit with models that have enriched He and N abundances. We fit the model spectral energy distribution for this temperature and gravity to the UV, optical, and IR fluxes to determine the angular size of and extinction towards the binary. The angular size then yields relations for the stellar radius and luminosity as a function of distance. By assuming that the supergiant rotates synchronously with the orbit, we can use the radius - distance relation to find mass estimates for both the supergiant and black hole as a function of the distance and the ratio of stellar to Roche radius. Fits of the orbital light curve yield an additional constraint that limits the solutions in the mass plane. Our results indicate masses of 23^{+8}_{-6} M_sun for the supergiant and 11^{+5}_{-3} M_sun for the black hole.Comment: ApJ in pres

    The ARAUCARIA project: Grid-Based Quantitative Spectroscopic Study of Massive Blue Stars in NGC55

    Full text link
    The quantitative study of the physical properties and chemical abundances of large samples of massive blue stars at different metallicities is a powerful tool to understand the nature and evolution of these objects. Their analysis beyond the Milky Way is challenging, nonetheless it is doable and the best way to investigate their behavior in different environments. Fulfilling this task in an objective way requires the implementation of automatic analysis techniques that can perform the analyses systematically, minimizing at the same time any possible bias. As part of the ARAUCARIA project we carry out the first quantitative spectroscopic analysis of a sample of 12 B-type supergiants in the galaxy NGC55 at 1.94 Mpc away. By applying the methodology developed in this work, we derive their stellar parameters, chemical abundances and provide a characterization of the present-day metallicity of their host galaxy. Based on the characteristics of the stellar atmosphere/line formation code FASTWIND, we designed and created a grid of models for the analysis of massive blue supergiant stars. Along with this new grid, we implemented a spectral analysis algorithm. Both tools were specially developed to perform fully consistent quantitative spectroscopic analyses of low spectral resolution of B-type supergiants in a fast and objective way. We present the main characteristics of our FASTWIND model grid and perform a number of tests to investigate the reliability of our methodology. The automatic tool is applied afterward to a sample of 12 B-type supergiant stars in NGC55, deriving the stellar parameters and abundances. The results indicate that our stars are part of a young population evolving towards a red supergiant phase. The derived chemical composition hints to an average metallicity similar to the one of the Large Magellanic Cloud, with no indication of a spatial trend across the galaxy.Comment: 19 pages, 12 figures and 9 tables. Accpeted for publication in A&

    Towards ensemble asteroseismology of the young open clusters Chi Persei and NGC 6910

    Get PDF
    As a result of the variability survey in Chi Persei and NGC6910, the number of Beta Cep stars that are members of these two open clusters is increased to twenty stars, nine in NGC6910 and eleven in Chi Persei. We compare pulsational properties, in particular the frequency spectra, of Beta Cep stars in both clusters and explain the differences in terms of the global parameters of the clusters. We also indicate that the more complicated pattern of the variability among B type stars in Chi Persei is very likely caused by higher rotational velocities of stars in this cluster. We conclude that the sample of pulsating stars in the two open clusters constitutes a very good starting point for the ensemble asteroseismology of Beta Cep-type stars and maybe also for other B-type pulsators.Comment: 4 pages, Astronomische Nachrichten, HELAS IV Conference, Arecife, Lanzarote, Feb 2010, submitte
    • …
    corecore