679 research outputs found
Artificial Brains and Hybrid Minds
The paper develops two related thought experiments exploring variations on an ‘animat’ theme. Animats are hybrid devices with both artificial and biological components. Traditionally, ‘components’ have been construed in concrete terms, as physical parts or constituent material structures. Many fascinating issues arise within this context of hybrid physical organization. However, within the context of functional/computational theories of mentality, demarcations based purely on material structure are unduly narrow. It is abstract functional structure which does the key work in characterizing the respective ‘components’ of thinking systems, while the ‘stuff’ of material implementation is of secondary importance. Thus the paper extends the received animat paradigm, and investigates some intriguing consequences of expanding the conception of bio-machine hybrids to include abstract functional and semantic structure. In particular, the thought experiments consider cases of mind-machine merger where there is no physical Brain-Machine Interface: indeed, the material human body and brain have been removed from the picture altogether. The first experiment illustrates some intrinsic theoretical difficulties in attempting to replicate the human mind in an alternative material medium, while the second reveals some deep conceptual problems in attempting to create a form of truly Artificial General Intelligence
Metaphoric coherence: Distinguishing verbal metaphor from `anomaly\u27
Theories and computational models of metaphor comprehension generally circumvent the question of metaphor versus “anomaly” in favor of a treatment of metaphor versus literal language. Making the distinction between metaphoric and “anomalous” expressions is subject to wide variation in judgment, yet humans agree that some potentially metaphoric expressions are much more comprehensible than others. In the context of a program which interprets simple isolated sentences that are potential instances of cross‐modal and other verbal metaphor, I consider some possible coherence criteria which must be satisfied for an expression to be “conceivable” metaphorically. Metaphoric constraints on object nominals are represented as abstracted or extended along with the invariant structural components of the verb meaning in a metaphor. This approach distinguishes what is preserved in metaphoric extension from that which is “violated”, thus referring to both “similarity” and “dissimilarity” views of metaphor. The role and potential limits of represented abstracted properties and constraints is discussed as they relate to the recognition of incoherent semantic combinations and the rejection or adjustment of metaphoric interpretations
Exploiting Lexical Conceptual Structure for paraphrase generation
Abstract. Lexical Conceptual Structure (LCS) represents verbs as semantic structures with a limited number of semantic predicates. This paper attempts to exploit how LCS can be used to explain the regularities underlying lexical and syntactic paraphrases, such as verb alternation, compound word decomposition, and lexical derivation. We propose a paraphrase generation model which transforms LCSs of verbs, and then conduct an empirical experiment taking the paraphrasing of Japanese light-verb constructions as an example. Experimental results justify that syntactic and semantic properties of verbs encoded in LCS are useful to semantically constrain the syntactic transformation in paraphrase generation.
The biological origin of linguistic diversity
In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language
Origin of symbol-using systems: speech, but not sign, without the semantic urge
Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint
Enhancement and suppression effects resulting from information structuring in sentences
Information structuring through the use of cleft sentences increases the processing efficiency of references to elements within the scope of focus. Furthermore, there is evidence that putting certain types of emphasis on individual words not only enhances their subsequent processing, but also protects these words from becoming suppressed in the wake of subsequent information, suggesting mechanisms of enhancement and suppression. In Experiment 1, we showed that clefted constructions facilitate the integration of subsequent sentences that make reference to elements within the scope of focus, and that they decrease the efficiency with reference to elements outside of the scope of focus. In Experiment 2, using an auditory text-change-detection paradigm, we showed that focus has similar effects on the strength of memory representations. These results add to the evidence for enhancement and suppression as mechanisms of sentence processing and clarify that the effects occur within sentences having a marked focus structure
Reading sentences with a late closure ambiguity: does semantic information help?
Stowe (1989) reported that semantic information eliminates garden paths in sentences with the direct-object vs. subject ambiguity, such as Even before the police stopped the driver was very frightened. Three experiments are presented which addressed some methodological problems in Stowe's study. Experiment 1, using a word-by-word, self-paced reading task with grammaticality judgements, manipulated animacy of the first subject noun while controlling for the plausibility of the transitive action. The results suggest that initial sentence analysis is not guided by animacy. Experiment 2 and 3, using the self-paced task with grammaticality judgements and eye-tracking, varied the plausibility of the direct-object nouns to test revision effects. Plausibility was found to facilitate revision without fully eliminating garden paths, in line with various revision models. The findings support the view of a sentence processing system relying heavily on syntactic information, with semantic information playing a weaker role both in initial analysis and during revision, thus supporting serial, syntax-first models and ranked-parallel models relying on structural criteria
Spatial language and converseness
Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in “The book is above the vase”. While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if “the book is above the vase” is true, then also “the vase is below the book” must be true) holds across the objects’ spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations
Recommended from our members
Spring School on Language, Music, and Cognition: Organizing Events in Time
The interdisciplinary spring school “Language, music, and cognition: Organizing events in time” was held from February 26 to March 2, 2018 at the Institute of Musicology of the University of Cologne. Language, speech, and music as events in time were explored from different perspectives including evolutionary biology, social cognition, developmental psychology, cognitive neuroscience of speech, language, and communication, as well as computational and biological approaches to language and music. There were 10 lectures, 4 workshops, and 1 student poster session.
Overall, the spring school investigated language and music as neurocognitive systems and focused on a mechanistic approach exploring the neural substrates underlying musical, linguistic, social, and emotional processes and behaviors. In particular, researchers approached questions concerning cognitive processes, computational procedures, and neural mechanisms underlying the temporal organization of language and music, mainly from two perspectives: one was concerned with syntax or structural representations of language and music as neurocognitive systems (i.e., an intrapersonal perspective), while the other emphasized social interaction and emotions in their communicative function (i.e., an interpersonal perspective). The spring school not only acted as a platform for knowledge transfer and exchange but also generated a number of important research questions as challenges for future investigations
- …