609 research outputs found

    How quickly do cloud droplets form on atmospheric particles?

    Get PDF
    International audienceThe influence of aerosols on cloud properties is an important modulator of the climate system. Traditional Köhler theory predicts the equilibrium concentration of cloud condensation nuclei (CCN); however, it is not known to what extent particles exist in the atmosphere that may be prevented from acting as CCN by kinetic limitations. We measured the rate of cloud droplet formation on atmospheric particles sampled at four sites across the United States during the summer of 2006: Great Smoky Mountain National Park, TN; Bondville, IL; Houston, TX; and the Atmospheric Radiation Measurement Program Southern Great Plains site near Lamont, OK. We express droplet growth rates with the mass accommodation coefficient (?), and report values of ? measured in the field normalized to the mean ? measured for lab-generated ammonium sulfate (AS) particles (i.e., ?'=?/?AS). Overall, 61% of ambient CCN grew at a rate similar to AS. We report the fraction of CCN that were "low-?'" (?'?0.33). Of the 16 days during which these measurements were made, 7 had relatively few low-?'CCN (77% during at least one ~30 min period). Day to day variability was greatest in Tennessee and Illinois, and low-?' CCN were most prevalent on days when back trajectories suggested that air was arriving from aloft. The highest fractions of low-?' CCN in Houston and Illinois occurred around local noon, and decreased later in the day. These results suggest that for some air masses, accurate quantification of CCN concentrations may need to account for kinetic limitations

    Causal trajectories description of atom diffraction by surfaces

    Get PDF
    9 pages, 7 figures -- PACS numbers: 79.20.Rf, 03.65.Sq, 03.65.BzThe method of quantum trajectories proposed by de Broglie and Bohm is applied to the study of atom diffraction by surfaces. As an example, a realistic model for the scattering of He off corrugated Cu is considered. In this way, the final angular distribution of trajectories is obtained by box-counting, which is in excellent agreement with the results calculated by standard S-matrix methods of scattering theory. More interestingly, the accumulation of quantum trajectories at the different diffraction peaks is explained in terms of the corresponding quantum potential. This non-local potential "guides" the trajectories causing a transition from a distribution near the surface, which reproduces its shape, to the final diffraction pattern observed in the asymptotic region, far from the diffracting object. These two regimes are homologous to the Fresnel and Fraunhofer regions described in undulatory optics. Finally, the turning points of the quantum trajectories provide a better description of the surface electronic density than the corresponding classical ones, usually employed for this task.This work was supported by DGES (Spain) under contracts No PB95-71, PB95-425 and PB96-76. A.S. Sanz also acknowledges the Universidad Autónoma de Madrid for a doctoral grant.Peer reviewe

    Overcoming Bifurcation Instability in High-Repetition-Rate Ho:YLF Regenerative Amplifiers

    Get PDF
    We demonstrate a Ho:YLF regenerative amplifier (RA) overcoming bifurcation instability and consequently achieving high extraction energies of 6.9 mJ at a repetition rate of 1 kHz with pulse-to-pulse fluctuations of 1.1%. Measurements of the output pulse energy, corroborated by numerical simulations, identify an operation point that allows high-energy pulse extraction at a minimum noise level. Complete suppression of the onset of bifurcation was achieved by gain saturation after each pumping cycle in the Ho:YLF crystal via lowering the repetition rate and cooling the crystal. Even for moderate cooling, a significant temperature dependence of the Ho:YLF RA performance was observed

    Quantitative Characterization of the T Cell Receptor Repertoire of Naive and Memory subsets Using an Integrated experimental and Computational Pipeline Which Is Robust, economical, and Versatile

    Get PDF
    The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious and non-infectious diseases. We describe a protocol for amplifying, sequencing, and analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is ligation of a single-stranded oligonucleotide to the 3′ end of the TCR cDNA. This allows amplification of all possible rearrangements using a single set of primers per locus. It also introduces a unique molecular identifier to label each starting cDNA molecule. This molecular identifier is used to correct for sequence errors and for effects of differential PCR amplification efficiency, thus producing more accurate measures of the true TCR frequency within the sample. This integrated experimental and computational pipeline is applied to the analysis of human memory and naive subpopulations, and results in consistent measures of diversity and inequality. After error correction, the distribution of TCR sequence abundance in all subpopulations followed a power law over a wide range of values. The power law exponent differed between naïve and memory populations, but was consistent between individuals. The integrated experimental and analysis pipeline we describe is appropriate to studies of T cell responses in a broad range of physiological and pathological contexts

    Worldwide data sets constrain the water vapor uptake coefficient in cloud formation

    Get PDF
    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, α_c. Estimates of α_c for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (α_c > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought
    corecore