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The method of quantum trajectories proposed by de Broglie and Bohm is applied to the study of atom
diffraction by surfaces. As an example, a realistic model for the scattering of He off corrugated Cu is consid-
ered. In this way, the final angular distribution of trajectories is obtained by box counting, which is in excellent
agreement with the results calculated by stand&ardatrix methods of scattering theory. More interestingly,
the accumulation of quantum trajectories at the different diffraction peaks is explained in terms of the corre-
sponding quantum potential. This nonlocal potential “guides” the trajectories causing a transition from a
distribution near the surface, which reproduces its shape, to the final diffraction pattern observed in the
asymptotic region, far from the diffracting object. These two regimes are homologous to the Fresnel and
Fraunhofer regions described in undulatory optics. Finally, the turning points of the quantum trajectories
provide a better description of the surface electronic density than the corresponding classical ones, usually
employed for this task.

I. INTRODUCTION been studied with Bohmian trajectori®s® showing ex-
amples of exponential divergence. Also, Deyal? and
From its beginning quantum mechanics has revealed asWyatt et al?! used the quantum fluid dynamical representa-
very successful and powerful theory to describe naturetion to study the photodissociation of NOCI and N@nd
However, the standard formalism in terms of probabilities ismodel collinear chemical reactions, respectively. Finally,
often unable to provide a satisfactory intuitive insight into other intersting studies of BB quantum trajectories can be
the underlying physical processes, as it is the case for thivund in Ref. 22.
corresponding classical description. The situation is even The purpose of this paper is to present a study of quantum
worse if one takes into account that there must be some kindffects in atom-surface scattering using the causal BB theory.
of correspondence between the predictions of both mechat is widely accepted that diffraction patterns arising from
ics in the appropriate limitglarge quantum numbers; atom-surface scattering are exclusively the result of the in-
—0,...)! terference of each incident particle with itself, and the broad-
Some alternative formalisms of quantum mechanics havening of the diffractive peaks a consequence of instrumental
been proposed in the literatu#e® Feynman path integrals imperfections®> Each particle produces its own diffraction
provide a statistical approach taking into account all possibl@robability pattern, and the total one is due to the incoherent
path connecting the initial and final points. Madelung de-superposition of such individual probabilities weighted ac-
rived a “hydrodynamical” formulation of quantum mechan- cording to the energy and angular distributions of the inci-
ics by introducing a wave function in polar form into the dent atomic beam. Thus, the result of an experimental mea-
Schralinger equation. Based on this method and using dsurement is simply the convolution of the diffraction pattern
Broglie’'s concept of pilot waves, Bohm developed a formal-of individual particles with the instrument response function,
ism in which the initial and final states of a process areso that the latter can be obtained by deconvolution of the
connected causally by quantum trajectories. former. In this work, we show how this scheme is naturally
Recently, there has been a renewed interest from the consupported by the theoretical framework given by the BB
putational point of view in the de Broglie—BohiBB) theory. The quantum potential which appears in this theory
theory as a tool to study quantum motidhn some early provides a different and clearer insight into quantum inter-
papers, Hirschfeldest al,” and Dewdney and Hiléystudied  ference, without the need to abandon the notion of well de-
the scattering by a square potential barrier, and Philippidi§ined trajectories. The properties of this potential have been
et al® considered the diffraction through two slits. More re- discussed in detail in the literature, and can be found in a
cently, Dewdneyet al° explained spin superposition, spin number of references; see for example Ref. 6. In the BB
measurements, Einstein-Podolsky-Rosen spin correlatiortBeory particles are guided by a surrounding wave, solution
and angular momentum measurements in terms of individuadf the Schrdinger equation, so that the spacetime orbits of
particle trajectorieqwith continuosusly variable spin vec- an ensemble of particles reproduce the statistical quantum
tors), Brown et al* considered the problem of identical par- predictions.
ticles within the BB formalism, Oriokt al. applied it to the As a working example, we have chosen a realistic model
simulation of resonant tunneling diod¥sand Leaven'Sand  system describing the He-Cu surface collisions, which have
Muga et all* used it to define arrival times. Chaos has alsobeen extensively studied both experimentally and theoreti-
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cally in the past. The scattering of noble gases, in particulato the coupled partial differential equations, alsoSMore-
He atoms, is a very powerful technique to characterize surever,Q is singular at the nodes of the wave function causing
faces. This nondestructive technique is only sensitive to thé¢hat the quantum trajectories avoid such regions. Among the
outermost atomic layers, thus providing information on themost noticeable properties of this potential are {Qas (in
surface corrugatiofft Specifically, the elastic scattering of general nonseparable, nonlocal, state or context dependent,
He atoms off different corrugated Cu surfaces exhibits a rickand is not mediated by the exchange of particles.
variety of interesting phenomena, such as rainbow patterns, Finally, an important comment concerning the asymptotic
selective adsorption resonances, and threshold resonancesgime in the BB formalism is in order. Usually, the
which have been observed experimentaflfzrom the theo- asymptotic region in a scattering problem is defined as the
retical point of view, those systems have been extensivelgone whereV is negligible and the particle classically fol-
studied at quantum levét,and classical dynamics have also lows a free motion. However, in the BB theory forces are
proven to be adequate to treat this probfénm particular,  also determined by, and this potential, as will be seen in
we have showt??° how the onset of classical chaos marksthe next section, extends well inside the classical asymptotic
the appearance gfemporary vibrational trapping of He at- region.
oms by the surface. Also, using a pure classical analysis, a Similarly to the classical case, in this formalism, quantum
new type of scattering singularity, named skipping singulartrajectories associated to a given quantum state can be cal-
ity, was describetf providing a classical view of threshold culated from Eq(2b) by integrating the differential equation
resonancedt However, this approach, even when corrected
semiclassically? does not satisfactorily account, for ex- . dr p(r,t)
ample, for the conditions of appearance of selective adsorp- r= dat m @
tion resonance®

The organization of the paper is as follows. In the nextwhere the momentum is given in terms of the quantum ac-
section a brief description of the BB theory and the procelion Sby
dure used for the calculation of the time-dependent wave
function needed to compute the quantum potential seen by h WV —-PVP*
the trajectories are given. The results obtained are presented p(r,t)zVS(r,t)=E |2 ' ®)
and discussed in Sec. lll, and finally the conclusions of the
present paper are summarized in Sec. IV. According to the probabilistic interpretation these trajecto-

ries are the paths along which probability flows. Clearly an
II. METHOD explicit expression for the wave functio®,(r,t), is needed
in this type of calculations. The quantum state is therefore

A. The quantum trajectories formalism of de Broglie—Bohm defined by¥ (r,t) andr(t), which evolve simultaneously in

Following a suggestion by Madelurigyriting the wave a deterministic way; it is in this sense that the wave

function in polar form “guides” the particles, each of them starting at different
positions.
W(r,t)=R(r,t) exd (i/7)S(r,t)], (1)
where R="*W¥ and S=(#/2i)(In ¥—In¥*) are two real B. Wave-packet propagation

functions of position and time, allows one to recast the time- Let us now describe very briefly the numerical procedure
dependent linear Schimger equation in the “hydrody- used to propagate the initial wave packet in our problem. To
namic” form solve the time-dependent ScHinger equation and obtain
5 5 the wave function necessary for the calculation of quantum
£+ RVS -0 (23 trajectories in the BB formalism we have chosen the method
ot m | proposed by Hellet?
As it is well known, Gaussian wave packets remain
S (VS)? Gaussian in harmonic potentials, and the expectation values
7 om TVHQ=0. (2D of positions and momenta follow the classical equations of
motion, according to Ehrenfest's theorem. For nonharmonic,
These expressions are the continuity and “quantum”put smooth potentials, wave packets sufficiently narrow in
Hamilton-Jacobi equations, respectively. The last term in Eqcomparison with the spatial variations of the potential, have
(2b) is the quantum potential defined as to be built in order for the propagation be well described by
by oo the quadratic approximation. Thus Heller's approach as-
_ ﬁ_ E 3) sumes a Gaussian wave function as solution of Rthger
- 2m R’ equation

which together with the classical potentildetermines the i i i

force acting on the system, and then its dynamics. The cor- ‘P(r,t)zex;{%(r—rt)At(r—rt)+ gpt(r—rt)Jr% Vil
respondence principle in this formalism is mathematically 6)
expressed a@— 0, leading to a continuous transition from

quantum to classical mechanics. As can be seen from Eqsthere the parameters, and p;, defining the center of the
(2), the quantum potentiaD, which depends om andt, is  Gaussian function, evolve according to the classical equa-
determined by the quantum state, directly throR@nd, due tions of motion
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t whereg indicates the diffraction channel satisfying the dif-

" i fraction condition for the corresponding final state given by
and the remaining complex parametehs, matrix, andvy,,

controlling the shape and phase of the Gaussian function K:=K;+G, (12)
respectively, are governed by the time evolution equations
whereK;, K, are the parallel components of the final and
_ 1 initial wave vectorsk; and k;, respectively, ands is the
At:—ZAt;u‘lAt—EV”(rt), (7o) reciprocal lattice vector. This method has been succesfully
applied to the study of He-LiF surfateand He-Cu surface
scattering®®
=i Tr(u *A)pr—E, (7d)
C. Model system
obtained by introducing Eq(6) into the time-dependent |n this paper we study the scattering tfle atoms off a
Schralinger equation. Hergu is the mass matrix, “Tr”  Cu(110) surface which is weakly corrugated. In these condi-
stands for the trace of the corresponding matrix, &fids  tions the out-of-plane collisions are negligible, and thus a 2D
the second derivative of the external potential in Cartesiamodel can be used. The interaction potential is described by
coordinates. Notice, as stated before, that this approximatioa corrugated Morse function
is only exact for strictly quadratic potentials.
Once the time evolution equations for the Gaussian func- V(x,2)=Vy(2)+Vc(X,2) (12)
tion parameters are known, the next step consists of perform-
ing the simulation of the elastic scattering process. For thigvith the Morse function
goal, calculations are carried out using an initial wave packet
placed far enough from the interaction region, which consist Vy(z)=D(1—e #%)? (13

of a plane wave with a well defined incident energy )
and the coupling term

P(r t—0)—ie”‘of—cf exp[i—(r—r )AG(r—rp) V =De 27 0.03 27Tx+o 0004 o
, \/k_zo 7 0)Ao 0 c(x,z)=De . cosa— . cosa— .
. . . (14)
i i i
+ %po(f— o) +%Pofo+g Yo|dro, 8 Coordinatez andx are defined as perpendicular and parallel

to the surface, respectively, and the values for the Morse
parameters ¢=1.05 A" and D=6.35 me\} and for the
unit cell length @=3.6 A) for this surface have been taken
&om the literature®

Since the centers of the Gaussian packets evolve accord-
ing to classical Hamilton equations of motipsee Eqs(7a)

i and (7b)], their initial values are selected according to the

Y(r,t=0)= E F{ (r—ro)Ag(r—ro)+ ﬁpo(r—ro) following classical relation$’

where ko=py/# is the incident wave vector. This wave
packet is approximated in our case as a sum of Gaussi
functions

N

i non i n Z20= Zmax (153
+2Poro+ 7 Vo) 9)
Xo= — Zmax tané,+ba, (15b)
whereN is the number of Gaussians used, and the centers of
the Gaussiansg, are chosen to cover the lenght spanned by P2=—v2mEcosé;, (159
a given number of unit cells. Obviously, by increasing the
value of N and the number of unit cells taken, a better ap- P,o=\2mEsing; (15d)

proximation to the wave functiol is obtained.

The initial wave packet is then propagated in time until,wherez,,,, represents a value af sufficiently large so that
after diffraction, it reaches the asymptotic region again. Dif-the classical interaction potential can be negleckeis the
fraction intensities are then computed as the square modulu®rmalized impact parameter €b=<1) covering the unit
of the Smatrix elements obtained from the asymptotic wavecell length,E the collision energy, and, the initial incident
function by projection onto final states represented by outgoangle. This anglé, initially determines the partition of the
ing plane wave¥ total energy and momentum between the two modes.
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D. Initial conditions for the quantum trajectories and 30

box-counting process 25/

Computation of the BB quantum trajectories implies the 201

integration of Eq.(4) starting at some definite initial posi-

tions. Although quantum mechanically all initial points are o 151

possible in principle, their probabilities must be distributed N
accordingly to the particle probability density given by the
square modulus of the corresponding initial wave function in

order to correctly reproduce the experimental situation under 0]

study. In our case this is accomplished by propagating a -5
large ensemble of trajectories all starting at the same value of
Z=Znax, @nd with a distribution of the parallel position
proportional to |W(X,Zmax.t=0)|2. These trajectories are

stopped when observed to follow a straight path for a long 0.0
enough time. Notice that, as we pointed out in Sec. Il A, this
happens in general at a distance much larger than that where -0.5

the classical potential vanishes. In our case, the classical and
guantum asymptotic regions start at approximately 12 and
2000 A, respectively. Once this “quantum asymptotical” re-
gion has been reached, diffraction intensities are computed
by counting the trajectories entering in small boxes of 0.3°
(consistent with the angular resolution of 0-20.5° usually
reached by the experimentalfSisas a function of the final
deflection angle. This calculation is to be compared with the
guantum mechanicegb-matrix theory results obtained from
Eq. (10).

lll. RESULTS AND DISCUSSION 40001
A. Numerical details of the wave packet propagation 3000
When applying Heller's propagation method to atom- . 2000 0 0

surface scattering some technical points have to be carefully NS
considered?® In the first place, the initial wave packet has to 1000+
be spread over a spatial region large enough to allow a suit- 0]
able sampling of the surface corrugation details. This is ac- ©)
complished, as explained in Sec. Il D, by using a linear com- -1000 ‘ ‘ ‘ :
bination of Heller's packets covering a region corresponding -1500-1000 -500 0 500 1000 1500
to several unit cells. In the second place, the value for the X (A)

imaginary part of the shap&, matrix must be chosen as to
guarantee the minimum spreading of the whole packet WheHe
hitting the surface and the interaction is strong. Taking this
into account, 10 Gaussian functions per unit cell were use
covering 10 unit cells; so that 100 Gaussian functions were

taken in total to simulate a plane wave of 21 meV of energyshown in Fig. 2. To make the picture clearer we have only

at normal incidenceflyo=0). represented one tenth of the original trajectories, and we
_In Fig. 1 we show the evolution of the wave packet, by haye not plotted their incident parts, where due to the lack of
displaying snapshots of the probability density at three difyneraction nothing interesting happens. Similarly to what is
ferent times: 0, 1.3, and 203 ps. These times have been sgpserved in the last snapshot of Figc)l it is easily recog-
lected as to show the system at representative momentsizeq here that the trajectories naturally accumulate along
namely, at its initial positiont(=0) far away from the inter- he directions corresponding to the three open diffraction
action region, when hitting the surface and the wave packethannels at the final angles 0° andl5.96°, obtained from
begins to be dispersed by the interactidr=(.3 p9, and  the diffraction condition of Eq(11). Notice that due the
finally in the asymptotic region at=203 ps. In this last |5rge scale used in the figure very few details are appre-
shapshot, the splitting of the initial wave packet into threegjzple, hence, for example, trajectories appear almost linear
components corresponding to the specular and two first ordejng corrugation does not manifest. In order to make a more
diffraction.channels i; clearly observed, the intensity of thegetailed analysis, we present in Fig. 3 enlargements of three
former being much bigger than that of the other peaks. different regions of Fig. 2. In the first pangfig. 3(a)] the
dynamics in the zone closest to the Cu surface is shown. To
discuss the connection with the surface corrugational fea-
To compute the diffraction intensities for our problem we tures we have also included the equipotential corresponding
have propagated-~1300 quantum trajectories, which are to 21 meV; to make it more obvious we have magnified the

FIG. 1. Snapshots of the wave packet showing the probability
nsity at different points of its evolutioria) 0 ps (initial wave
ackej, (b) 1.3 ps(when the packet hit the surfacend(c) 203 ps
hen the packet is in the asymptotic region

B. Quantum trajectories and quantum potential
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FIG. 2. Quantum trajectories for the scattering of He atoms off 200
a CUY110 surface at a total energy of 21 meV and normal inci-
dence. To make the figure more readable only the outgoing part of 100

the trajectories has been displayed. The corresponding classical 60—
equipotential contour has also been included; due to the large scale
used the effect of the corrugation is not appreciable. Trajectories
naturally accumulate along the three open diffraction channels cor-
responding to orders 0 and1, respectively.

corresponding values afby a factor of 100. It is seen that
the quantum trajectories display undulations aldagroxi-
mately) vertical lines, in a quite regular fashion. In this way
it appears a first layer of kinks on top of the corrugation
function maxima; in a second shell, kinks sit on the minima,
and so on, giving rise to a quite regular pattern which con-
stitutes a good image of the diffracting surface. Notice that
this pattern formed by the quantum trajectories is dae
least in part to the fact that they cannot cross each ofher.
In the second enlargement, Fig(b8 a region further FIG. 3. Different enlargements of Fig. 2 corresponding(t:
apart from the surface is shown. Here the undulatory patterRresnel,(b) transition, and(c) Fraunhofer regions of the quantum
progressively disappears, and the trajectories becomes matrejectories. In panefa) the coordinatez of the equipotential has
rectilinear, altough still showing noticeable kinks when been magnified by a factor of 100 in order to make the corrugation
avoiding crossing. Also the quantum trajectories start tceffects obvious.
C'U”Fp. along three incipient nonoyerlaping groups which A hese two regions is not well defined, since there is a con-
reminiscent of the three open d'ff_fac“of‘ c_hannels that argi, s transition from one into the other. However, in clas-
obtained for 21 meV and perpendicular incidence. The dengjco| ptics it can be given a typical range as a characteristic
sity of trajectories in each subset is an indication of the d'f'length separating these two regimes-Ro) .5’ For a general

Z(A)

fraction intensity at each of these channels. aperture this range is given by
Finally, in Fig. 3c), which corresponds to the zone of
very large values of the perpendicular coordinatand con- _ d?
sequently ofx), trajectories enter the asymptotic region and RO*M’ (16)

become clearly rectilinear. At the same time, the three incipi—Whered represents the size of the aperture arid the wave-
gz;let;eams get completely defined along the diffraction lenght of the incident beam. When this criterion is applied to

Cased(a) and(c) depicted in Fig. 3 are analogous to the our case a value of-126 A, in good agreement with the

) . . : . ; results of Fig. 3, is obtained.
regions that appear in classical optics diffraction phenomena, 1o pehavior that we have just described can be very well

where two well defined aproximations, the near field orynqerstood in terms of an effective potential, obtained by
Fresn(_al regime and the far fle|.d or Fraunhofer regime, exislpggition of the guantun® and classicaV potentials, which
The difference between both is that while the former givesjetermines the dynamics of the particles. The corresponding
spatial information about the diffracting objets form), the  potential is shown in Fig. 4 for the three regions: Fresnel,
latter gives information about the effects produced by thatransition, and Fraunhofer, described above. The troughs or
diffracting object(the redistribution of momentaWe will  canyons exhibited by the effective potential, which are solely
use this fact for labeling the enlargements by identifyingdue to the quantum interaction, are regions where the trajec-
them with their homologies in optics. The limit between tories undergo strong forces, accelerating and decelerating
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FIG. 4. Effective potentialy¢4=V + Q, shown both in ® and contours plots. Bottom, middle, and top tiers correspond, respectively, to
the Fresnel, transition, and Fraunhofer regions. The plateaus and troughs “guiding” the quantum trajectories to the allowed diffraction
channels are clearly visible.

the particles which emerge in the plateaus where the quarcan be performed in the same way; for example one could
tum force is much weaker and the dynamics smooth. In thistudy the crystalline momentum transfer, or the fottésat
way the trajectories are deflected mainly towards the direcact on the different parts of the wave packet.
tions that constitute the allowed diffraction channels. More- Another point worth discussing here is that of the surface
over, the strong variations of the effective potential are thercorrugation. In treatments based on classical trajectories, the
responsible for the kinks observed along the trajectories. liturning points give an idea of this corrugation of the diffract-
comparison to this, the effect of the classical potential is onlying surface. This corrugation is determined by the electronic
constrained to a small area in the vicinity of the Cu surfacedensity at the surface and is well described by the corre-
(z<12 A), with the effect of dispersing the incident wave sponding equipotential line. It is therefore interesting now to
packet after the collision. consider how this view changes when the quantum trajecto-
This type of analysis constitutes a proof of the interpreta+ties of the BB theory, determined by the effective potential,
tive power of the BB theory, which is only possible due to are considered. In Fig. @) the loci formed by the turning
causality. Moreover, the fact that quantum trajectories do ngpoints of the quantuntfull line) and classicaldashed ling
cross in configuration space enables us to know, by followirajectories are presented. As is seen the oscillations in the
ing the corresponding “histories,” from which part of the quantum curve are less pronounced, with the result that the
initial wave packet each one of them was originated. This igrajectories penetrate less in the classically allowed region
illustrated in Fig. 5. In it, we have represented in the left tierand more in the classically forbidden one. In p@ot of the
the quantum trajectories of Fig. 2 corresponding to each diffigure the potential profiles/ (dashed ling Q (dotted ling,
fraction channel separately, and in the right part we havandV+ Q (full line), evaluated at the quantum turning points
indicated, with a thick line, over the probability density pro- are presented. The most important result is that, as a conse-
file | W (X,Zmax,t=0)|? the region where they come from. As quence of the quantum interaction, which is dephased from
can be seen, the specular diffraction channel corresponds tbe classical one, the effective potential is higher By
the center of the packet, while channeld are originated at meV. The combination of these two effect explains the at-
the borders. Other more sophisticated dynamical analysdenuation of the corrugation discussed above.
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FIG. 5. Connection between quantum trajectories and the initial probability density. In the left tier we present the results of Fig. 2
separated among the three existing diffraction channels, and in the right part the corresponding initial pointfIegx,the,.t=0)|?
probability density profile have been highlighted with thick line.
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FIG. 6. (& Loci formed by the turning points of classical FIG. 7. Diffraction intensities as a function of the deflection

(dashed ling and quantum trajectorie€ull line) of Fig. 2. (b) angle for the scattering of He atoms off a(C0) surface at a total
Quantum(dotted ling, classical(dashed ling and effective(full energy of 21 meV and normal incidence. The histogram corre-

line) potential profiles evaluated at the quantum turning points presponds to the results obtained from the angular distribution of quan-
sented in(a). tum trajectories and the solid line @matrix calculation.



7750 A. S. SANZ, F. BORONDO, AND S. MIRET-ARTE PRB 61

Finally, in Fig. 7 the results concerning the angular distri-causally particles with the counts in the detector. The bright
bution of the quantum trajectories, computed by the boxand dark fringes, or variations in intensity in a diffraction
counting technique described in Sec. Il D, are shown in theattern has a causal agent, the quantum potential. Even more,
form of a histogram. Three peaks are obtained correspondinigom diffraction intensities it is possible, in principle, to infer
to orders O (specular and =1, centered at 0° and which trajectories contribute to each maximum.
~+15.7°, being the former the most intense by a factor of This formalism can be related to the path integral ap-
5.8. We also show in this plot the results calculated by theproach, since each of these spacetime tracks followed by
S-matrix method as implemented by Drolshagen andparticles can be viewed as a “superposition” of classical
Heller3® The agreement is fairly good, and the positions ofpaths, taking into account their interfererfddowever, there
the peaks coincide very well with the values predicted by thdés an important difference between these two approaches. For
diffraction condition of Eq(11). However, a small discrep- any given initial condition, there exists only one quantum
ancy between the quantum trajectories &anhatrix results  trajectory taking the particle to the final state, while there are
is observed in Fig. 7 for the positions of thel peaks. This infinitely many Feynman paths connecting them.
can be attributed to the approximation used in the wave To summarize, in this paper a theoretical study of the
packet propagation, since in Heller's method a quadratic apelastic scattering of He atoms off a @d0 surface, de-
proximation for the potential is assumed. scribed by a reallistic 2D interaction potential, has been pre-

sented. The collision dynamics have been described using
the causal formalism due to Bohm, where particles follow

IV. CONCLUSION well defined quantum trajectories, which allows to connect
the initial and final states. These trajectories (@eterminis-

Interference and diffraction phenomena are central to anyically) governed by a “quantum” Hamilton-Jacobi equa-
discussion about the interpretation of quantum mechanics. Ifion. Here the concept of wave acquires a new physical
particular, the study of the double slit experiment in the BBmeaning, since it gives the particle probability dengitya
in 1979, where quantum trajectories were explicitly calcu-statistical sengeand at the same time “guides” the trajec-
lated, represented a point of renewed interest in this type abry described by the particle. This action takes place only by
questions. The interpretation in this formalism relies on themeans of a new additive term in the potential, which is of
fact that particles follow spacetime tracks different from thatpure quantum nature since it depends only on the amplitude
of a classical particle with the same physical characteristicsf the wave function. From the trajectories propagated by
and moving in the same experimental setup. Furthermorehis method we have computed, using a box-counting proce-
along the propagation from the source to the screen, particlaure, the final angular distribution of intensities for an en-
are surrounded and guided by the wave function. Wherrgy of 21 meV and normal incidence. The corresponding
many particleqor trajectories are considered, the observed results are in very good agreement with the values calculated
diffraction pattern can be viewed as the result of the selfpy the standar®-matrix method.
interference of all incident particles; in other words, the as-  Another important result of our paper is the possibility to
pect of the pattern is granular and built up from a series otalculate, using the turning points of quantum trajectories,
single-particle events. In the two slits experiment, quantumhe electronic density at the surface, a central issue in surface
trajectories split into two subsets, each one coming from &cience. This alternative method provides a better description
different slit, without any crossings between them. of the surface corrugation that the usual one, based on clas-

In this work we have studied a more complicated prob-sijcal turning points.
lem, which is analogous to the optical diffraction by a grat-  |n our opinion, the use of the BB theory for the study of
ing, coming from surface physics: the elastic scattering of Heyrocesses similar to the one we have studied is in general
atoms off corrugated Cu surfaces but in presence of a perirery powerful, since it provides a causal intuitive interpreta-
odic, soft potential. This gave us the opportunity to revisittion of the underlying dynamics. For example, we are cur-
the concepts of near field and far field of optics establishingently applying this method to more complicated scattering
an homology with quantum mechanics, in the sense that theituations, in which resonant or rainbow phenomena takes
wave function evolves as an optical wave showing two wellplace, in order to gain a deeper understanding of these pro-
differentiated regimes analogous to the Fresnel and Frautesses. In particular, the diffraction of He from a single ad-
hofer regions appearing in optics. This later regime is mor&orbate or from an island, for which many theoretical and
conditioned by the quantum potential than by the classicagxperimental results can be found in the literature, could sup-
one, since the former acts in zones where the influence of thgly an alternative deeper and more quantitative view of the
surface is negligible, as discussed in Sec. Il A. In this sensgyuantum interference.
the asymptotic region in the theoretical framework given by
the BB theory is very different from that in standard quan-
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