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Causal trajectories description of atom diffraction by surfaces

A. S. Sanz* and F. Borondo†

Departamento de Quı´mica, C-IX, Universidad Auto´noma de Madrid, Cantoblanco—28049 Madrid, Spain

S. Miret-Artés‡

Instituto de Matema´ticas y Fı́sica Fundamental, C.S.I.C., Serrano 123, 28006 Madrid, Spain
~Received 29 June 1999; revised manuscript received 15 September 1999!

The method of quantum trajectories proposed by de Broglie and Bohm is applied to the study of atom
diffraction by surfaces. As an example, a realistic model for the scattering of He off corrugated Cu is consid-
ered. In this way, the final angular distribution of trajectories is obtained by box counting, which is in excellent
agreement with the results calculated by standardS matrix methods of scattering theory. More interestingly,
the accumulation of quantum trajectories at the different diffraction peaks is explained in terms of the corre-
sponding quantum potential. This nonlocal potential ‘‘guides’’ the trajectories causing a transition from a
distribution near the surface, which reproduces its shape, to the final diffraction pattern observed in the
asymptotic region, far from the diffracting object. These two regimes are homologous to the Fresnel and
Fraunhofer regions described in undulatory optics. Finally, the turning points of the quantum trajectories
provide a better description of the surface electronic density than the corresponding classical ones, usually
employed for this task.
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I. INTRODUCTION

From its beginning quantum mechanics has revealed
very successful and powerful theory to describe natu
However, the standard formalism in terms of probabilities
often unable to provide a satisfactory intuitive insight in
the underlying physical processes, as it is the case for
corresponding classical description. The situation is e
worse if one takes into account that there must be some
of correspondence between the predictions of both mec
ics in the appropriate limits~large quantum numbers,\
→0, . . . ).1

Some alternative formalisms of quantum mechanics h
been proposed in the literature.2–5 Feynman path integral
provide a statistical approach taking into account all poss
path connecting the initial and final points. Madelung d
rived a ‘‘hydrodynamical’’ formulation of quantum mechan
ics by introducing a wave function in polar form into th
Schrödinger equation. Based on this method and using
Broglie’s concept of pilot waves, Bohm developed a form
ism in which the initial and final states of a process a
connected causally by quantum trajectories.

Recently, there has been a renewed interest from the c
putational point of view in the de Broglie–Bohm~BB!
theory as a tool to study quantum motion.6 In some early
papers, Hirschfelderet al.,7 and Dewdney and Hiley8 studied
the scattering by a square potential barrier, and Philipp
et al.9 considered the diffraction through two slits. More r
cently, Dewdneyet al.10 explained spin superposition, sp
measurements, Einstein-Podolsky-Rosen spin correlat
and angular momentum measurements in terms of individ
particle trajectories~with continuosusly variable spin vec
tors!, Brown et al.11 considered the problem of identical pa
ticles within the BB formalism, Oriolet al. applied it to the
simulation of resonant tunneling diodes,12 and Leavens13 and
Muga et al.14 used it to define arrival times. Chaos has a
PRB 610163-1829/2000/61~11!/7743~9!/$15.00
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been studied with Bohmian trajectories,15–19 showing ex-
amples of exponential divergence. Also, Deyet al.20 and
Wyatt et al.21 used the quantum fluid dynamical represen
tion to study the photodissociation of NOCl and NO2, and
model collinear chemical reactions, respectively. Fina
other intersting studies of BB quantum trajectories can
found in Ref. 22.

The purpose of this paper is to present a study of quan
effects in atom-surface scattering using the causal BB the
It is widely accepted that diffraction patterns arising fro
atom-surface scattering are exclusively the result of the
terference of each incident particle with itself, and the bro
ening of the diffractive peaks a consequence of instrume
imperfections.23 Each particle produces its own diffractio
probability pattern, and the total one is due to the incoher
superposition of such individual probabilities weighted a
cording to the energy and angular distributions of the in
dent atomic beam. Thus, the result of an experimental m
surement is simply the convolution of the diffraction patte
of individual particles with the instrument response functio
so that the latter can be obtained by deconvolution of
former. In this work, we show how this scheme is natura
supported by the theoretical framework given by the B
theory. The quantum potential which appears in this the
provides a different and clearer insight into quantum int
ference, without the need to abandon the notion of well
fined trajectories. The properties of this potential have b
discussed in detail in the literature, and can be found i
number of references; see for example Ref. 6. In the
theory particles are guided by a surrounding wave, solut
of the Schro¨dinger equation, so that the spacetime orbits
an ensemble of particles reproduce the statistical quan
predictions.

As a working example, we have chosen a realistic mo
system describing the He-Cu surface collisions, which h
been extensively studied both experimentally and theor
7743 ©2000 The American Physical Society
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7744 PRB 61A. S. SANZ, F. BORONDO, AND S. MIRET-ARTE´S
cally in the past. The scattering of noble gases, in partic
He atoms, is a very powerful technique to characterize s
faces. This nondestructive technique is only sensitive to
outermost atomic layers, thus providing information on t
surface corrugation.24 Specifically, the elastic scattering o
He atoms off different corrugated Cu surfaces exhibits a r
variety of interesting phenomena, such as rainbow patte
selective adsorption resonances, and threshold resona
which have been observed experimentally.25 From the theo-
retical point of view, those systems have been extensiv
studied at quantum level,26 and classical dynamics have als
proven to be adequate to treat this problem.27 In particular,
we have shown28,29 how the onset of classical chaos mar
the appearance of~temporary! vibrational trapping of He at-
oms by the surface. Also, using a pure classical analys
new type of scattering singularity, named skipping singul
ity, was described30 providing a classical view of threshol
resonances.31 However, this approach, even when correc
semiclassically,32 does not satisfactorily account, for ex
ample, for the conditions of appearance of selective ads
tion resonances.33

The organization of the paper is as follows. In the ne
section a brief description of the BB theory and the pro
dure used for the calculation of the time-dependent w
function needed to compute the quantum potential seen
the trajectories are given. The results obtained are prese
and discussed in Sec. III, and finally the conclusions of
present paper are summarized in Sec. IV.

II. METHOD

A. The quantum trajectories formalism of de Broglie–Bohm

Following a suggestion by Madelung,3 writing the wave
function in polar form

C~r ,t !5R~r ,t ! exp@~ i /\!S~r ,t !#, ~1!

where R5C* C and S5(\/2i )(ln C2ln C* ) are two real
functions of position and time, allows one to recast the tim
dependent linear Schro¨dinger equation in the ‘‘hydrody-
namic’’ form

]R2

]t
1¹S R2¹S

m D50, ~2a!

]S

]t
1

~¹S!2

2m
1V1Q50. ~2b!

These expressions are the continuity and ‘‘quantu
Hamilton-Jacobi equations, respectively. The last term in
~2b! is the quantum potential defined as

Q52
\2

2m

¹2R

R
, ~3!

which together with the classical potentialV determines the
force acting on the system, and then its dynamics. The
respondence principle in this formalism is mathematica
expressed asQ→0, leading to a continuous transition from
quantum to classical mechanics. As can be seen from
~2!, the quantum potentialQ, which depends onr and t, is
determined by the quantum state, directly throughR and, due
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to the coupled partial differential equations, also onS. More-
over,Q is singular at the nodes of the wave function caus
that the quantum trajectories avoid such regions. Among
most noticeable properties of this potential are thatQ is ~in
general! nonseparable, nonlocal, state or context depend
and is not mediated by the exchange of particles.

Finally, an important comment concerning the asympto
regime in the BB formalism is in order. Usually, th
asymptotic region in a scattering problem is defined as
zone whereV is negligible and the particle classically fo
lows a free motion. However, in the BB theory forces a
also determined byQ, and this potential, as will be seen i
the next section, extends well inside the classical asympt
region.

Similarly to the classical case, in this formalism, quantu
trajectories associated to a given quantum state can be
culated from Eq.~2b! by integrating the differential equatio

ṙ[
dr

dt
5

p~r ,t !

m
, ~4!

where the momentum is given in terms of the quantum
tion S by

p~r ,t !5¹S~r ,t !5
\

2i

C* ¹C2C¹C*

uCu2
. ~5!

According to the probabilistic interpretation these trajec
ries are the paths along which probability flows. Clearly
explicit expression for the wave function,C(r ,t), is needed
in this type of calculations. The quantum state is theref
defined byC(r ,t) andr (t), which evolve simultaneously in
a deterministic way; it is in this sense that the wa
‘‘guides’’ the particles, each of them starting at differe
positions.

B. Wave-packet propagation

Let us now describe very briefly the numerical procedu
used to propagate the initial wave packet in our problem.
solve the time-dependent Schro¨dinger equation and obtain
the wave function necessary for the calculation of quant
trajectories in the BB formalism we have chosen the meth
proposed by Heller.34

As it is well known, Gaussian wave packets rema
Gaussian in harmonic potentials, and the expectation va
of positions and momenta follow the classical equations
motion, according to Ehrenfest’s theorem. For nonharmo
but smooth potentials, wave packets sufficiently narrow
comparison with the spatial variations of the potential, ha
to be built in order for the propagation be well described
the quadratic approximation. Thus Heller’s approach
sumes a Gaussian wave function as solution of Schro¨dinger
equation

C~r ,t !5expF i

\
~r2r t!At~r2r t!1

i

\
pt~r2r t!1

i

\
g tG ,

~6!

where the parameters,r t and pt , defining the center of the
Gaussian function, evolve according to the classical eq
tions of motion
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ṙ t5S ]H

]p D
p5pt

, ~7a!

ṗt52S ]H

]r D
r5rt

, ~7b!

and the remaining complex parameters,At matrix, andg t ,
controlling the shape and phase of the Gaussian func
respectively, are governed by the time evolution equatio

Ȧt522Atm
21At2

1

2
V9~r t!, ~7c!

ġ t5 i\ Tr~m21At!pt ṙ t2E, ~7d!

obtained by introducing Eq.~6! into the time-dependen
Schrödinger equation. Herem is the mass matrix, ‘‘Tr’’
stands for the trace of the corresponding matrix, andV9 is
the second derivative of the external potential in Cartes
coordinates. Notice, as stated before, that this approxima
is only exact for strictly quadratic potentials.

Once the time evolution equations for the Gaussian fu
tion parameters are known, the next step consists of perfo
ing the simulation of the elastic scattering process. For
goal, calculations are carried out using an initial wave pac
placed far enough from the interaction region, which con
of a plane wave with a well defined incident energy

C~r ,t50!5
1

Akz0

eik0r5CE expF i

\
~r2r0!A0~r2r0!

1
i

\
p0~r2r0!1

i

\
p0r01

i

\
g0Gdr0 , ~8!

where k05p0 /\ is the incident wave vector. This wav
packet is approximated in our case as a sum of Gaus
functions

C~r ,t50!5C (
n51

N

expF i

\
~r2r0

n!A0
n~r2r0

n!1
i

\
p0

n~r2r0
n!

1
i

\
p0

nr0
n1

i

\
g0

nG , ~9!

whereN is the number of Gaussians used, and the center
the Gaussians,r0

n , are chosen to cover the lenght spanned
a given number of unit cells. Obviously, by increasing t
value of N and the number of unit cells taken, a better a
proximation to the wave functionC is obtained.

The initial wave packet is then propagated in time un
after diffraction, it reaches the asymptotic region again. D
fraction intensities are then computed as the square mod
of theS-matrix elements obtained from the asymptotic wa
function by projection onto final states represented by out
ing plane waves34
n
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S0
g5C8Akz

g (
n51

N S p3

det A0
nD expF2 i\

4
~kt

n2kg!

3~A0
n!21~kt

n2kg!2 ikgr t
n1 ik0

nr0
n1

i

\
g t

nG , ~10!

whereg indicates the diffraction channel satisfying the d
fraction condition for the corresponding final state given

K f5K i1G, ~11!

whereK f , K i are the parallel components of the final a
initial wave vectorsk f and k i , respectively, andG is the
reciprocal lattice vector. This method has been succesf
applied to the study of He-LiF surface35 and He-Cu surface
scattering.36

C. Model system

In this paper we study the scattering of4He atoms off a
Cu~110! surface which is weakly corrugated. In these con
tions the out-of-plane collisions are negligible, and thus a
model can be used. The interaction potential is described
a corrugated Morse function

V~x,z!5VM~z!1VC~x,z! ~12!

with the Morse function

VM~z!5D~12e2az!2 ~13!

and the coupling term

VC~x,z!5De22azF0.03 cos
2px

a
10.0004 cos

4px

a G .
~14!

Coordinatesz andx are defined as perpendicular and para
to the surface, respectively, and the values for the Mo
parameters (a51.05 Å21 and D56.35 meV! and for the
unit cell length (a53.6 Å! for this surface have been take
from the literature.25

Since the centers of the Gaussian packets evolve acc
ing to classical Hamilton equations of motion@see Eqs.~7a!
and ~7b!#, their initial values are selected according to t
following classical relations:29

z05zmax, ~15a!

x052zmax tanu i1ba, ~15b!

Pz052A2mEcosu i , ~15c!

Px05A2mEsinu i , ~15d!

wherezmax represents a value ofz sufficiently large so that
the classical interaction potential can be neglected,b is the
normalized impact parameter (0<b<1) covering the unit
cell length,E the collision energy, andu i the initial incident
angle. This angleu i initially determines the partition of the
total energy and momentum between the two modes.
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D. Initial conditions for the quantum trajectories and
box-counting process

Computation of the BB quantum trajectories implies t
integration of Eq.~4! starting at some definite initial pos
tions. Although quantum mechanically all initial points a
possible in principle, their probabilities must be distribut
accordingly to the particle probability density given by t
square modulus of the corresponding initial wave function
order to correctly reproduce the experimental situation un
study. In our case this is accomplished by propagatin
large ensemble of trajectories all starting at the same valu
z5zmax, and with a distribution of the parallel positionx
proportional to uC(x,zmax,t50)u2. These trajectories ar
stopped when observed to follow a straight path for a lo
enough time. Notice that, as we pointed out in Sec. II A, t
happens in general at a distance much larger than that w
the classical potential vanishes. In our case, the classica
quantum asymptotic regions start at approximately 12
2000 Å, respectively. Once this ‘‘quantum asymptotical’’ r
gion has been reached, diffraction intensities are compu
by counting the trajectories entering in small boxes of 0
~consistent with the angular resolution of 0.2°20.5° usually
reached by the experimentalists25! as a function of the fina
deflection angle. This calculation is to be compared with
quantum mechanicalS-matrix theory results obtained from
Eq. ~10!.

III. RESULTS AND DISCUSSION

A. Numerical details of the wave packet propagation

When applying Heller’s propagation method to ato
surface scattering some technical points have to be care
considered.35 In the first place, the initial wave packet has
be spread over a spatial region large enough to allow a s
able sampling of the surface corrugation details. This is
complished, as explained in Sec. II D, by using a linear co
bination of Heller’s packets covering a region correspond
to several unit cells. In the second place, the value for
imaginary part of the shapeA0 matrix must be chosen as t
guarantee the minimum spreading of the whole packet w
hitting the surface and the interaction is strong. Taking t
into account, 10 Gaussian functions per unit cell were u
covering 10 unit cells; so that 100 Gaussian functions w
taken in total to simulate a plane wave of 21 meV of ene
at normal incidence (px,050).

In Fig. 1 we show the evolution of the wave packet,
displaying snapshots of the probability density at three
ferent times: 0, 1.3, and 203 ps. These times have been
lected as to show the system at representative mome
namely, at its initial position (t50) far away from the inter-
action region, when hitting the surface and the wave pac
begins to be dispersed by the interaction (t51.3 ps!, and
finally in the asymptotic region att5203 ps. In this last
snapshot, the splitting of the initial wave packet into thr
components corresponding to the specular and two first o
diffraction channels is clearly observed, the intensity of
former being much bigger than that of the other peaks.

B. Quantum trajectories and quantum potential

To compute the diffraction intensities for our problem w
have propagated;1300 quantum trajectories, which a
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shown in Fig. 2. To make the picture clearer we have o
represented one tenth of the original trajectories, and
have not plotted their incident parts, where due to the lack
interaction nothing interesting happens. Similarly to what
observed in the last snapshot of Fig. 1~c!, it is easily recog-
nized here that the trajectories naturally accumulate al
the directions corresponding to the three open diffract
channels at the final angles 0° and615.96°, obtained from
the diffraction condition of Eq.~11!. Notice that due the
large scale used in the figure very few details are app
ciable, hence, for example, trajectories appear almost lin
and corrugation does not manifest. In order to make a m
detailed analysis, we present in Fig. 3 enlargements of th
different regions of Fig. 2. In the first panel@Fig. 3~a!# the
dynamics in the zone closest to the Cu surface is shown
discuss the connection with the surface corrugational f
tures we have also included the equipotential correspond
to 21 meV; to make it more obvious we have magnified

FIG. 1. Snapshots of the wave packet showing the probab
density at different points of its evolution:~a! 0 ps ~initial wave
packet!, ~b! 1.3 ps~when the packet hit the surface!, and~c! 203 ps
~when the packet is in the asymptotic region!.
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PRB 61 7747CAUSAL TRAJECTORIES DESCRIPTION OF ATOM . . .
corresponding values ofz by a factor of 100. It is seen tha
the quantum trajectories display undulations along~aproxi-
mately! vertical lines, in a quite regular fashion. In this wa
it appears a first layer of kinks on top of the corrugati
function maxima; in a second shell, kinks sit on the minim
and so on, giving rise to a quite regular pattern which c
stitutes a good image of the diffracting surface. Notice t
this pattern formed by the quantum trajectories is due~at
least in part! to the fact that they cannot cross each other6

In the second enlargement, Fig. 3~b!, a region further
apart from the surface is shown. Here the undulatory pat
progressively disappears, and the trajectories becomes
rectilinear, altough still showing noticeable kinks whe
avoiding crossing. Also the quantum trajectories start
clump along three incipient nonoverlaping groups which
reminiscent of the three open diffraction channels that
obtained for 21 meV and perpendicular incidence. The d
sity of trajectories in each subset is an indication of the d
fraction intensity at each of these channels.

Finally, in Fig. 3~c!, which corresponds to the zone o
very large values of the perpendicular coordinatez ~and con-
sequently ofx), trajectories enter the asymptotic region a
become clearly rectilinear. At the same time, the three inc
ent ‘‘beams’’ get completely defined along the diffractio
angles.

Cases~a! and ~c! depicted in Fig. 3 are analogous to th
regions that appear in classical optics diffraction phenome
where two well defined aproximations, the near field
Fresnel regime and the far field or Fraunhofer regime, ex
The difference between both is that while the former giv
spatial information about the diffracting object~its form!, the
latter gives information about the effects produced by t
diffracting object~the redistribution of momenta!. We will
use this fact for labeling the enlargements by identifyi
them with their homologies in optics. The limit betwee

FIG. 2. Quantum trajectories for the scattering of He atoms
a Cu~110! surface at a total energy of 21 meV and normal in
dence. To make the figure more readable only the outgoing pa
the trajectories has been displayed. The corresponding clas
equipotential contour has also been included; due to the large s
used the effect of the corrugation is not appreciable. Trajecto
naturally accumulate along the three open diffraction channels
responding to orders 0 and61, respectively.
,
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t

these two regions is not well defined, since there is a c
tinuous transition from one into the other. However, in cla
sical optics it can be given a typical range as a character
length separating these two regimes (r @R0).37 For a general
aperture this range is given by

R05
d2

4pl
, ~16!

whered represents the size of the aperture andl is the wave-
lenght of the incident beam. When this criterion is applied
our case a value of;126 Å, in good agreement with th
results of Fig. 3, is obtained.

The behavior that we have just described can be very w
understood in terms of an effective potential, obtained
addition of the quantumQ and classicalV potentials, which
determines the dynamics of the particles. The correspond
potential is shown in Fig. 4 for the three regions: Fresn
transition, and Fraunhofer, described above. The trough
canyons exhibited by the effective potential, which are sol
due to the quantum interaction, are regions where the tra
tories undergo strong forces, accelerating and decelera

ff

of
cal
ale
s
r-

FIG. 3. Different enlargements of Fig. 2 corresponding to:~a!
Fresnel,~b! transition, and~c! Fraunhofer regions of the quantum
trajectories. In panel~a! the coordinatez of the equipotential has
been magnified by a factor of 100 in order to make the corruga
effects obvious.
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FIG. 4. Effective potential,Veff5V1Q, shown both in 3D and contours plots. Bottom, middle, and top tiers correspond, respective
the Fresnel, transition, and Fraunhofer regions. The plateaus and troughs ‘‘guiding’’ the quantum trajectories to the allowed d
channels are clearly visible.
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the particles which emerge in the plateaus where the qu
tum force is much weaker and the dynamics smooth. In
way the trajectories are deflected mainly towards the dir
tions that constitute the allowed diffraction channels. Mo
over, the strong variations of the effective potential are th
responsible for the kinks observed along the trajectories
comparison to this, the effect of the classical potential is o
constrained to a small area in the vicinity of the Cu surfa
(z,12 Å!, with the effect of dispersing the incident wav
packet after the collision.

This type of analysis constitutes a proof of the interpre
tive power of the BB theory, which is only possible due
causality. Moreover, the fact that quantum trajectories do
cross in configuration space enables us to know, by follo
ing the corresponding ‘‘histories,’’ from which part of th
initial wave packet each one of them was originated. Thi
illustrated in Fig. 5. In it, we have represented in the left t
the quantum trajectories of Fig. 2 corresponding to each
fraction channel separately, and in the right part we h
indicated, with a thick line, over the probability density pr
file uC(x,zmax,t50)u2 the region where they come from. A
can be seen, the specular diffraction channel correspond
the center of the packet, while channels61 are originated at
the borders. Other more sophisticated dynamical analy
n-
is
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r
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can be performed in the same way; for example one co
study the crystalline momentum transfer, or the forces21 that
act on the different parts of the wave packet.

Another point worth discussing here is that of the surfa
corrugation. In treatments based on classical trajectories
turning points give an idea of this corrugation of the diffrac
ing surface. This corrugation is determined by the electro
density at the surface and is well described by the co
sponding equipotential line. It is therefore interesting now
consider how this view changes when the quantum traje
ries of the BB theory, determined by the effective potent
are considered. In Fig. 6~a! the loci formed by the turning
points of the quantum~full line! and classical~dashed line!
trajectories are presented. As is seen the oscillations in
quantum curve are less pronounced, with the result that
trajectories penetrate less in the classically allowed reg
and more in the classically forbidden one. In part~b! of the
figure the potential profiles:V ~dashed line!, Q ~dotted line!,
andV1Q ~full line!, evaluated at the quantum turning poin
are presented. The most important result is that, as a co
quence of the quantum interaction, which is dephased fr
the classical one, the effective potential is higher by;7
meV. The combination of these two effect explains the
tenuation of the corrugation discussed above.



f Fig. 2
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FIG. 5. Connection between quantum trajectories and the initial probability density. In the left tier we present the results o
separated among the three existing diffraction channels, and in the right part the corresponding initial points on theuC(x,zmax,t50)u2

probability density profile have been highlighted with thick line.
l

re

n

rre-
an-
FIG. 6. ~a! Loci formed by the turning points of classica
~dashed line! and quantum trajectories~full line! of Fig. 2. ~b!
Quantum~dotted line!, classical~dashed line!, and effective~full
line! potential profiles evaluated at the quantum turning points p
sented in~a!.
-

FIG. 7. Diffraction intensities as a function of the deflectio
angle for the scattering of He atoms off a Cu~110! surface at a total
energy of 21 meV and normal incidence. The histogram co
sponds to the results obtained from the angular distribution of qu
tum trajectories and the solid line toS-matrix calculation.
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Finally, in Fig. 7 the results concerning the angular dis
bution of the quantum trajectories, computed by the b
counting technique described in Sec. II D, are shown in
form of a histogram. Three peaks are obtained correspon
to orders 0 ~specular! and 61, centered at 0° and
;615.7°, being the former the most intense by a factor
5.8. We also show in this plot the results calculated by
S-matrix method as implemented by Drolshagen a
Heller.35 The agreement is fairly good, and the positions
the peaks coincide very well with the values predicted by
diffraction condition of Eq.~11!. However, a small discrep
ancy between the quantum trajectories andS-matrix results
is observed in Fig. 7 for the positions of the61 peaks. This
can be attributed to the approximation used in the w
packet propagation, since in Heller’s method a quadratic
proximation for the potential is assumed.

IV. CONCLUSION

Interference and diffraction phenomena are central to
discussion about the interpretation of quantum mechanics
particular, the study of the double slit experiment in the B
in 1979, where quantum trajectories were explicitly calc
lated, represented a point of renewed interest in this typ
questions. The interpretation in this formalism relies on
fact that particles follow spacetime tracks different from th
of a classical particle with the same physical characteris
and moving in the same experimental setup. Furtherm
along the propagation from the source to the screen, part
are surrounded and guided by the wave function. Wh
many particles~or trajectories! are considered, the observe
diffraction pattern can be viewed as the result of the s
interference of all incident particles; in other words, the
pect of the pattern is granular and built up from a series
single-particle events. In the two slits experiment, quant
trajectories split into two subsets, each one coming from
different slit, without any crossings between them.

In this work we have studied a more complicated pro
lem, which is analogous to the optical diffraction by a gr
ing, coming from surface physics: the elastic scattering of
atoms off corrugated Cu surfaces but in presence of a p
odic, soft potential. This gave us the opportunity to rev
the concepts of near field and far field of optics establish
an homology with quantum mechanics, in the sense that
wave function evolves as an optical wave showing two w
differentiated regimes analogous to the Fresnel and Fra
hofer regions appearing in optics. This later regime is m
conditioned by the quantum potential than by the class
one, since the former acts in zones where the influence o
surface is negligible, as discussed in Sec. II A. In this sen
the asymptotic region in the theoretical framework given
the BB theory is very different from that in standard qua
tum or classical mechanics.

Experimentally, diffraction patterns are granular beca
the detector signal consists of a given number of counts~of
He atoms in this case! per unit time. This is consistent with
the concept of quantum trajectories, that as we stated be
are the paths along which probability flows, thus connect
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causally particles with the counts in the detector. The bri
and dark fringes, or variations in intensity in a diffractio
pattern has a causal agent, the quantum potential. Even m
from diffraction intensities it is possible, in principle, to infe
which trajectories contribute to each maximum.

This formalism can be related to the path integral a
proach, since each of these spacetime tracks followed
particles can be viewed as a ‘‘superposition’’ of classic
paths, taking into account their interference.6 However, there
is an important difference between these two approaches
any given initial condition, there exists only one quantu
trajectory taking the particle to the final state, while there
infinitely many Feynman paths connecting them.

To summarize, in this paper a theoretical study of t
elastic scattering of He atoms off a Cu~110! surface, de-
scribed by a reallistic 2D interaction potential, has been p
sented. The collision dynamics have been described u
the causal formalism due to Bohm, where particles follo
well defined quantum trajectories, which allows to conn
the initial and final states. These trajectories are~determinis-
tically! governed by a ‘‘quantum’’ Hamilton-Jacobi equa
tion. Here the concept of wave acquires a new phys
meaning, since it gives the particle probability density~in a
statistical sense!, and at the same time ‘‘guides’’ the trajec
tory described by the particle. This action takes place only
means of a new additive term in the potential, which is
pure quantum nature since it depends only on the amplit
of the wave function. From the trajectories propagated
this method we have computed, using a box-counting pro
dure, the final angular distribution of intensities for an e
ergy of 21 meV and normal incidence. The correspond
results are in very good agreement with the values calcula
by the standardS-matrix method.

Another important result of our paper is the possibility
calculate, using the turning points of quantum trajectori
the electronic density at the surface, a central issue in sur
science. This alternative method provides a better descrip
of the surface corrugation that the usual one, based on c
sical turning points.

In our opinion, the use of the BB theory for the study
processes similar to the one we have studied is in gen
very powerful, since it provides a causal intuitive interpre
tion of the underlying dynamics. For example, we are c
rently applying this method to more complicated scatter
situations, in which resonant or rainbow phenomena ta
place, in order to gain a deeper understanding of these
cesses. In particular, the diffraction of He from a single a
sorbate or from an island, for which many theoretical a
experimental results can be found in the literature, could s
ply an alternative deeper and more quantitative view of
quantum interference.
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