
                          Rickards, A. M. J., Miles, R. E. H., Davies, J. F., Marshall, F. H., & Reid, J.
P. (2013). Measurements of the Sensitivity of Aerosol Hygroscopicity and
the kappa Parameter to the O/C Ratio. Journal of Physical Chemistry A,
117(51), 14120-14131. 10.1021/jp407991n

Link to published version (if available):
10.1021/jp407991n

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29027025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1021/jp407991n
http://research-information.bristol.ac.uk/en/publications/measurements-of-the-sensitivity-of-aerosol-hygroscopicity-and-the-kappa-parameter-to-the-oc-ratio(b89da0fb-119b-412a-ad86-ab2c236b9e6d).html
http://research-information.bristol.ac.uk/en/publications/measurements-of-the-sensitivity-of-aerosol-hygroscopicity-and-the-kappa-parameter-to-the-oc-ratio(b89da0fb-119b-412a-ad86-ab2c236b9e6d).html


1 
 

Measurements of the Sensitivity of Aerosol Hygroscopicity  1 

and the Kappa Parameter to the O/C Ratio 2 

 3 

Andrew M. J. Rickards, Rachael E. H. Miles, James F. Davies, Frances H. Marshall and Jonathan P. Reid*  4 

School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK 5 

 6 

ABSTRACT 7 

We report measurements of the subsaturated hygroscopic growth of aerosol particles composed of single 8 

organic components of varying oxygen-to-carbon ratio up to relative humidities approaching saturation using 9 

the techniques of aerosol optical tweezers and an electrodynamic balance. The variation in the 10 

hygroscopicity parameter  between compounds of even the same O/C ratio is found to be significant with, 11 

for example, a range in  values from 0.12 to 0.38 for compounds with an O/C of 1. The measurements are 12 

compared with a review of all of the available literature data for which both the  value and O/C ratio are 13 

reported and a new parameterisation determined. Critical supersaturations predicted using this 14 

parameterisation yield values that have associated uncertainties that are comparable to typical uncertainties 15 

in experimental measurements of critical supersaturations. However, the systematic variability between  16 

parameterisations determined from different studies remains large, consistent with the O/C ratio providing 17 

only an approximate guide to aerosol hygroscopicity and reflecting significant variations for aerosols of 18 

different chemical functionality, composition and oxidation history. 19 
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I. INTRODUCTION 29 

Aerosols play an important role in influencing radiative forcing through both the direct effect, where the 30 

aerosol particles directly scatter and absorb radiation, and the indirect effect, where the aerosol particles act 31 

as cloud condensation nuclei (CCN) and influence cloud droplet number concentrations, size distributions 32 

and lifetime.1–3 Understanding the response of aerosol particle size and composition to changes in relative 33 

humidity (RH) is crucial to quantifying their chemical, physical and optical properties and to reducing the 34 

large uncertainty in the magnitude of the aerosol indirect effect.4 An aerosol responds to an increase in 35 

relative humidity through the increased partitioning of water into the condensed phase, maintaining 36 

equilibrium between the gas and liquid phases. At the microphysical level, an individual aerosol particle 37 

grows to a wet diameter D(RH) that is usually referenced to the diameter of the particle under dry conditions, 38 

D0, a ratio referred to as the growth factor, GF (= D(RH)/D0). The dry size reflects the amount of involatile 39 

solute associated with the aerosol particle.  40 

 41 

Characterising the hygroscopic growth of ambient aerosol has become a routine analytical measurement for 42 

accumulation mode particles through the use, for example, of an hygroscopic tandem differential mobility 43 

analyser (HTDMA).5–7 The aerosol sample must be dried before passing it through a first DMA to select a 44 

narrow range of particle sizes. The dry aerosol is then humidified under a high RH and passed into a second 45 

DMA, which is used to measure the equilibrium size at the elevated RH. In the laboratory, measurements of 46 

equilibrium hygroscopic growth on single or multiple component aerosol are performed using ensemble (eg. 47 

HTDMA) and single particle techniques (eg. electrodynamic balance and optical tweezers),8–11 providing 48 

controlled studies that can be used to robustly test equilibrium state models and interpret ambient field 49 

measurements.  50 

 51 

The hygroscopic growth of individual inorganic and organic component aerosol can be rigorously treated 52 

with well-established models12–17 and with approximate treatments derived to capture the phase 53 

behaviour.18,19 One such simplified framework is κ-Köhler theory,18 a quantitative model describing the 54 

degree of hygroscopic growth for an aerosol component by a single hygroscopicity parameter, κ. This 55 

parameter can be derived from hygroscopic growth measurements made under subsaturated conditions and 56 

can be inferred from the critical supersaturation required to achieve activation of cloud condensation nuclei 57 
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(CCN) under supersaturated conditions. For organic species, κ is usually between 0 (non-hygroscopic) and 58 

0.5 (very hygroscopic).18 Organic components form a substantial proportion of atmospheric aerosol, between 59 

20 and 90 % of the submicron mass depending on region,20,21 and consists of an enormous variety of 60 

different species with a wide range of functional groups for which the hygroscopic properties of only a 61 

handful are well characterised.22,23 Attributing contributions to the hygroscopic growth of ambient aerosol 62 

from individual compounds is an intractable approach and the application of a more simplistic model, such 63 

as κ-Köhler theory, is unavoidable. A necessary caveat is that more complex models should be applied 64 

whenever possible to assess and quantify the level of uncertainty that is acceptable. For example, the change 65 

in partitioning of semi-volatile organic components with RH,24 the occurrence of liquid-liquid phase 66 

separation,25 and the surface tension depression of droplets by surfactants26 are all examples of 67 

thermodynamic properties that still require further detailed investigation.  68 

 69 

For subsaturated growth, κ is defined by Petters & Kreidenweis18 by the parameterisation: 70 
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where aw is the water activity in the gas phase. This expression is stated in the large particle limit, where the 72 

effect of surface curvature can be neglected, and the water activity can be assumed to be equal to the RH. A 73 

constant osmotic coefficient must be assumed, an assumption that breaks down as the RH decreases and non-74 

ideality in solute/solvent interactions becomes important. Not only can this framework for quantifying 75 

hygroscopicity be used for binary solution aerosol containing a single solute and water, but standard mixing 76 

rules such as the Zdanovskii, Stokes, and Robinson (ZSR) assumption can be used to predict the 77 

hygroscopicity of mixed component aerosol.27 To estimate  from hygroscopic growth measurements it is 78 

common practice to make measurements at high RH (0.9 or larger). Petters & Kriedenweis28 reported that  79 

values estimated from hygroscopic growth and critical supersaturation measurements agreed to within 30 %, 80 

suggesting that the change in  measured at a water activity, aw, of 0.9 to the value at the water activity 81 

corresponding to activation is small. Although a large number of more recent studies have found consistency 82 

(within 10 - 30 %) for the values of  estimated from subsaturated and supersaturated measurements,9,18,29–35 83 

larger discrepancies have been found in a significant number of studies.36–42 The discrepancies have been 84 
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attributed to the non-ideal behaviour for supersaturated solutions of solutes,43,44 the possibility of kinetic 85 

limitations on particle drying and the estimation of the dry particle size,45,46 incorrect assumptions about 86 

surface tension effects,36–42 and the slow dissolution of sparingly soluble compounds.44,47 However 87 

determining the relative importance of these effects may prove difficult as recent research has also shown 88 

instrument dependent discrepancies in  values determined for secondary organic aerosol (SOA).46,48  89 

 90 

Quantifying the accuracy of any hygroscopicity model for predicting the critical supersaturation for 91 

activation of CCN is crucially important for understanding laboratory measurements and the formation of 92 

cloud droplets from ambient aerosol.49 At activation, the water activity in an aerosol particle is typically 93 

larger than 0.99 and approaches a value of 1. Indeed, under such limiting conditions it is important that the 94 

functional forms chosen to reproduce the hygroscopic response have the correct form to characterise the 95 

limiting behaviour;50 large uncertainties in the water activity at activation can result even from the 96 

appropriateness of the parameterisation chosen to represent the relationship between water activity and solute 97 

concentration (or mass fraction of solute).  98 

 99 

Examples of the variability in the theoretical treatments of hygroscopicity for three typical single organic 100 

component aerosol (malonic acid, levoglucosan and adipic acid) are shown in Figure 1, using four well-101 

established models. The Extended Aerosol Inorganics Model (E-AIM) was implemented by Clegg et al. to 102 

treat the solution thermodynamics of the H+-NH4
+-Na+-SO4

2--NO3
--Cl--H2O system.12,14 It was later extended 103 

to include organic components using the widely used UNIversal quasichemical Functional-group Activity 104 

Coefficient (UNIFAC) model.51 In some cases, the parameters for certain functional groups have been 105 

modified according to measurements made on single organic aerosol particles using an electrodynamic 106 

balance by Peng et al.13 The Aerosol Diameter Dependent Equilibrium Model (ADDEM) was developed by 107 

Topping et al. to describe the thermodynamic behaviour of mixed inorganic salts and is coupled with a 108 

diameter dependent Kelvin term to account for surface curvature.15 The thermodynamic relationships 109 

describing water partitioning with varying RH assume the same parametric dependence as E-AIM for 110 

inorganic components and UNIFAC for organic components. The Aerosol Inorganic-Organic Mixtures 111 

Functional groups Activity Coefficients model (AIOMFAC) is a further group contribution model designed 112 
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to determine activity coefficients of chemical species within aerosols containing atmospherically relevant 113 

inorganic-organic mixtures and accounts for the interactions of ions and neutral compounds.16,17  114 

 115 

Although there is considerable variation in the subsaturated growth curves calculated from the models for the 116 

three compounds shown in Figure 1, the growth curves are comparable in the dilute solute limit, particularly 117 

for the models that are considered to be more reliable (i.e. excluding UNIFAC without the Peng correction). 118 

Using equation (1) we can estimate the apparent variation in the value of  that would be retrieved if these 119 

models were used to infer the hygroscopicity parameter at RHs other than at saturation on approach to 120 

infinite dilution of the solute; the apparent  depends strongly on the water activity even at values 121 

approaching saturation and varies considerably from system to system. An increase in  at high RH, as seen 122 

in Figure 1, has previously been attributed to the effects of surface activity and non-idealities in the 123 

droplets.26,52 However, in the current simulations the qualitative shape of the dependence of  on RH reflects 124 

deviations from non-ideal behaviour with no accounting for surface tension depression. Even subtle changes 125 

in the slope of the growth curve near 100 % RH can significantly alter the value of  that would be 126 

calculated from fitting to equation (1).  127 

 128 

In the atmosphere, organic compounds can undergo both functionalisation reactions, notably oxidation to 129 

form lower volatility compounds with an increased stoichiometric ratio of oxygen to carbon atoms in a 130 

compound (O/C), and fragmentation reactions that lead to higher volatility compounds. The partitioning of 131 

semi-volatile and lower volatility organic compounds to the condensed phase leads to the production of 132 

SOA. As might be intuitively expected, the hygroscopicity of ambient and chamber SOA, as quantified by 133 

the measured value of  has been found to correlate with the O/C ratio.7,20,53 The O/C ratio is conveniently 134 

derived from the relative abundance of the ion signal m/z 44 in Aerodyne aerosol mass spectrometry (AMS) 135 

measurements of aerosol composition.20 The m/z 44 signal can be largely attributed to the CO2
+ ion 136 

fragment, and the fraction of the total organic signal due to the m/z 44 ion fragment, f44, has been shown to 137 

vary linearly with O/C by the Aiken et al. parameterisation.7,54  138 

 139 
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Our aim here is to examine the relationship between O/C and  for a range of organic functional groups 140 

through a series of new laboratory measurements for organic components of selected O/C ratios. We also 141 

provide a comprehensive review of the literature, summarising all previous measurements of κ when the 142 

composition of the aerosol, represented by its O/C ratio, has also been reported, spanning the range from 143 

around 0 to 2. The literature review encompasses a wide variety of systems spanning field measurements, 144 

chamber SOA studies, and single particle laboratory studies, providing data from both natural and 145 

synthesised multi-component particles, as well as single component aerosol. Finally, we look at the 146 

variability in  that can be expected for compounds of the same O/C ratio and the implications of this 147 

variability for predictions of the critical supersaturation. 148 

 149 

II. SINGLE PARTICLE MEASUREMENTS OF SUBSATURATED HYGROSCOPIC GROWTH 150 

We have used two experimental techniques to measure the hygroscopic growth of binary and multi-151 

component aqueous solution droplets containing a range of organic compounds with varying O/C ratio. 152 

Using the aerosol optical tweezers technique, we report the equilibrium response in particle size to changes 153 

in RH up to a maximum water activity of 0.85. In the second technique, we use an electrodynamic balance to 154 

retrieve the hygroscopic growth curve from fast measurements of evaporation kinetics from dilute aqueous 155 

solution droplets. This approach allows measurements to be made at water activities as high as >0.99. 156 

 157 

II.a Aerosol Optical Tweezers Measurements 158 

Initial measurements of hygroscopic growth using aerosol optical tweezers (AOT) focused on organic 159 

aerosol components with O/C=1. A range of species with different functionalities and solubilities were 160 

investigated to assess the comparability in their hygroscopic growth and values of κ.  Single component 161 

aerosol containing organic compounds with a broader range of O/C ratios were then explored, followed by 162 

measurements of the hygroscopic properties of droplets containing mixtures of organic compounds. Table 1 163 

summarises the compounds studied.  164 

 165 

The aerosol optical tweezers experimental method has been described in detail in our previous 166 

publications55–57 and will only be reviewed briefly here. A single beam gradient force optical trap (optical 167 
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tweezers) was formed within a custom built trapping chamber by passing continuous wave laser light at 532 168 

nm through a microscope objective (Olympus oil immersion, × 100).  An aqueous solution of each organic 169 

compound to be studied was nebulised in to the trapping chamber under a humidified nitrogen flow using an 170 

ultrasonic nebuliser (Omron). A single particle was captured from the aerosol plume and trapped at the focal 171 

point of the laser beam. Inelastic Raman scattering, Stoke’s shifted from the laser wavelength, from chemical 172 

species within the droplet was collected by the microscope objective and coupled into a spectrograph 173 

(Princeton Instruments). Raman spectra from the trapped droplet were collected every second. An image of 174 

the droplet was also recorded using conventional brightfield microscopy. By altering the ratio of wet to dry 175 

nitrogen flows, the RH of the environment inside the trapping chamber was varied stepwise between 55 % 176 

and 85 %. The trapped droplet was allowed to fully equilibrate after each step change in relative humidity 177 

and its hygroscopic response recorded. Accurate measurement of the RH was made using two probes, one 178 

before (Vaisala; ± 2 % RH) and one after (Honeywell; ± 2 % RH) the trapping chamber. 179 

 180 

The spectroscopic signature from the tweezed aerosol consists of broad spontaneous Stokes bands arising 181 

from the Raman excitation of vibrational modes of the molecular constituents of the droplet. Superimposed 182 

on this spontaneous scattering background, the Raman intensity is amplified at wavelengths commensurate 183 

with whispering gallery modes, providing a unique fingerprint of resonant wavelengths that can be compared 184 

with Mie scattering calculations to retrieve both the droplet size and refractive index, both with uncertainties 185 

of ±0.05 %.58,59 A typical variation in droplet size and refractive index with changing RH profile is shown in 186 

Figure 2 for hygroscopicity measurements on an aqueous sucrose droplet. The figure shows a clear decrease 187 

in size and increase in refractive index as the RH is decreased and water evaporates from the droplet.  188 

 189 

To convert the droplet radial data into a GF it is necessary to know the solute dry diameter, D0. This was 190 

determined from the volume fraction of organic in the droplet, Vf,org, estimated from the retrieved refractive 191 

index and the total droplet volume, as given by the droplet diameter. Assuming the refractive index of the 192 

aqueous organic droplet at a particular RH, RIdrop, is the linear sum of the refractive indices of the pure 193 

organic component, RIorg, and water, RIw, weighted by their volume fractions present within the droplet, Vf,org 194 

can be calculated using:  195 
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wfworgforgdrop VRIVRIRI ,,                                   (2) 196 

where Vf,w is the volume fraction of water in the droplet (1-Vf,org) and RIdrop is determined from the Raman 197 

spectra at each RH. The pure refractive indices for the organic compounds of interest were obtained by 198 

measuring the refractive index of a series of aqueous solutions of the organic with increasing mass fraction 199 

of solute (mfs) using a refractometer (MISCO Palm Abbe). Solutions were made up to the bulk solubility 200 

limit for each compound. From a quadratic fit, the refractive index was estimated at an extrapolated mfs = 1 201 

to determine RIorg (Figure 3). Where possible, values determined by this approach were compared with 202 

literature values. An estimate of the typical level of uncertainty associated with such extrapolations is 203 

indicated in Figure 3.  204 

 205 

For solutions containing more than one organic component, the contribution in volume weighted refractive 206 

index of each solute, i, was considered separately: 207 
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For both binary and multicomponent aerosol, a value of D0 was determined from the particle radius and 210 

refractive index pairing retrieved from the Raman spectra at every RH step, with the mean and standard 211 

deviation of these values then taken to give an average value for D0, along with an associated error, . The 212 

mean value of D0 was used to convert measured wet size to a GF, with this then used in equation (1) to 213 

determine a value of  for the organic compound at each aw for which measurements were taken. Upper and 214 

lower bounds were placed on the retrieved  values by performing the same calculation using dry particle 215 

diameters of D0 ±  to calculate the GFs. 216 

 217 

II.b Electrodynamic Balance Measurements 218 

The equilibrium hygroscopic properties of aerosol play a key role in the mass transfer dynamics of water 219 

between the droplet and gas phase.60 Indeed, we have shown that measurements of the evaporation rate of 220 

water from aerosol droplets of known composition may be used to determine hygroscopic growth of aerosol 221 
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at water activities approaching saturation.61 We use the same approach here and only briefly review the 222 

technique. Using an electrodynamic balance held at a fixed RH and temperature, measurements of water 223 

evaporation from aerosol droplets of two compositions were rapidly studied in sequence, introducing the 224 

droplets from two droplet-on-demand micro-dispensers (Figure 4a). Following the evaporation of a pure 225 

water droplet, which was used as a probe/control for determining the gas phase conditions, a droplet 226 

containing a sample solute was introduced and its approach to equilibrium monitored. The time-227 

dependencies in droplet radii were determined with 10 ms time-resolution from the angular fringe spacing in 228 

the elastic scattering pattern using a geometrical optic approximation.62 Changes in refractive index were 229 

accounted for in a post-analysis step,63 and the average evaporation trends for multiple droplets of both probe 230 

and sample solutions were found. 231 

 232 

The evaporation rate of pure water from the control droplet was used to estimate the RH in the gas phase, 233 

using the equations of Kulmala et al. to simulate the evaporation kinetics, with an accuracy in the gas phase 234 

water activity of around ±0.001 at 0.95 and ± 0.003 at 0.90.64,65 The evaporation of the sample solution 235 

droplets took place under identical conditions given the timescales of the measurements. A simple volume 236 

additive approach to treating the solution density was employed to determine the mass flux at every time 237 

resolved radius and, from estimates of the initial size and mass concentration, a dry size was determined and 238 

a growth factor at every radius deduced (Figure 4b (inset)). Under the assumption that gas phase diffusion 239 

was the limiting process in evaporation (a valid assumption given the insensitivities to surface processes and 240 

the non-viscous nature of the particles),60 the equations of Kulmala et al. were used to calculate, using the 241 

RH and mass flux, the water activity of the droplet at every size. The results of this procedure were averaged 242 

and are shown against growth factor in Figure 4b. This procedure has been demonstrated in our previous 243 

work61 and is used here as a way of determining hygroscopicity at water activities approaching unity. The 244 

sensitivity of the droplet evaporation measurements to different values of  is illustrated in Figure 5(a), 245 

clearly indicating the differences in hygroscopicity which can be resolved by the comparative kinetic 246 

technique. For comparison, the evaporation profiles for two compounds with different values of  are shown 247 

in Figure 5(b). These are intended only as examples and it should be noted that the two measurements are 248 

into marginally different RHs and the droplets follow different variations in density with composition. 249 
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 250 

IV. RESULTS AND DISCUSSION 251 

In Figure 6 we report the experimentally determined κ values retrieved at different values of water activity 252 

for selected compounds studied with varying O/C. Values estimated from both the AOT (with aw between 253 

0.55 - 0.8) and EDB (with aw > 0.9) techniques are shown. As apparent from the data, the techniques are in 254 

good agreement and provide consistent values of  as the same aw is approached, indicated by linear fits to 255 

the data used to guide the eye. Although no increase in  at very high water activity can be discerned within 256 

experimental error as infinite dilution is approached, an increase in the apparent  is observed as the RH/aw 257 

decreases. The retrieval of an apparent dependence of  on aw provides a clear demonstration of the 258 

limitations of the -Kӧhler model at relative humidities below the dilute limit when solution non-ideality 259 

becomes significant and the assumptions inherent to the theory no longer apply. The sensitivity of the  260 

value to the aw of the measurement varies from compound to compound, as demonstrated by the five 261 

representative compounds shown in Figure 6. The  values determined from the EDB measurements show 262 

excellent self-consistency over the limited range of high aw measurements.  263 

 264 

A single value of  was determined from the AOT measurements by calculating the GF at the highest 265 

measured RH and converting it using the -Kӧhler equation. An associated uncertainty was derived from the 266 

uncertainty in the pure organic refractive index (from the extrapolation in Figure 3) and the standard 267 

deviation of the dry size. Single values of  were determined from the EDB measurements by averaging over 268 

the values determined at each aw, with the uncertainty then given by the standard deviation in these values. 269 

We summarise the values estimated from the AOT and EDB measurements in Figure 7 and Table 1: a clear 270 

general trend of increasing hygroscopicity with increasing O/C is observed, consistent with previous 271 

observations.7,53,66–69  272 

 273 

We have undertaken an extensive review of  values published in the literature (also shown in Figure 7) 274 

encompassing a wide range of measurements that have included ensemble field measurements, chamber 275 

SOA studies, and single particle measurements, which have yielded data for multicomponent atmospheric 276 

aerosol, analogous laboratory-generated systems, and individual pure component particles, respectively (see 277 
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Supplementary Information, Table 1). The measurement techniques used to determine  can be divided 278 

according to those operating in the subsaturated regime (RH < 100 %) and in the supersaturated regime (RH 279 

> 100 %). In the subsaturated regime, the majority of literature studies used an HTDMA to determine the 280 

hygroscopic properties of ensemble aerosol.5–7,18–20,69–75 Other subsaturated techniques that have been used 281 

included aerosol optical tweezers,8 electrodynamic balances,9–11 cavity ring down spectroscopy,68 a 282 

differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP),76,77 the Leipzig Aerosol Cloud 283 

Interaction Simulator (LACIS),78 and a continuous-flow thermal gradient column (CFTGC).52 Measurements 284 

in the supersaturated regime were mostly performed used a cloud condensation nuclei counter (CCNC), 285 

inferring the hygroscopicity parameter from critical supersaturations.18,19,53,66,67,75,79–89 In this technique, a 286 

narrow size fraction of the aerosol sample to be studied is selected using, for example, a DMA or a virtual 287 

impactor and exposed to a chosen supersaturation. The ratio of the number of aerosol particles that activate 288 

to the total number of particles exposed to the supersaturation is then calculated. By scanning through 289 

different supersaturations, the critical supersaturation is determined as the value at which 50 % of the aerosol 290 

particles activate, which can then be used to estimate . In the vast majority of the literature studies, the O/C 291 

for the aerosol was determined from aerosol mass spectrometer (AMS) f44 values according to the Aiken et 292 

al. parameterisation.5–7,20,53,66–69,71–73,75–85,87–89  In other cases the chemical composition of the aerosol was well 293 

defined and thus the O/C was calculated from the molecular formula.8–11,18,19,52,70,74,86 The published studies 294 

found in the literature reported  values for aerosols with O/C ranging from around 0 to 2. 295 

 296 

The data identified in the literature review show a general positive correlation between  and O/C, although 297 

it is not possible to represent the relationship between  and O/C with a simple linear parameterisation 298 

(Figure 7). In order to identify whether specific measurement regimes or types of aerosol sample could lead 299 

to systematic variations in the value of , the literature data have been subdivided in three ways: a) according 300 

to the saturation regime under which it was taken, b) the origin of the aerosol sample, and c) the method by 301 

which the O/C was determined. These three divisions are shown as separate panels in Figure 8. It is clear that 302 

regardless of the criterion used to divide the data, equivalent levels of variability in the value of  for a given 303 

O/C are observed from the literature data. Although the O/C ratio is a frequently used measure of aerosol 304 

composition/age, Figures 7 and 8 suggest that it is a poor indicator of hygroscopicity. This conclusion is 305 
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supported by the AOT and EDB measurements reported in this study, which mirror closely the degree of 306 

scatter seen in the literature data, in particular the large variation in the value of  seen in the measurements 307 

for O/C = 1. 308 

 309 

It is instructive to consider how the scatter in the values of  at a given O/C would manifest itself as an 310 

uncertainty in the predicted critical supersaturation for CCN activation if a linear parameterisation linking  311 

and O/C was used to calculate this quantity. Figure 9a shows all of the data points presented in Figure 7 312 

binned according to their O/C in intervals of 0.1, with the  values taken as the average of all data points in 313 

each O/C bin and the error bars showing the associated standard deviation. Any uncertainties in the  values 314 

reported in the original studies have been ignored and we consider only the minimum error that would be 315 

introduced in to the critical supersaturation by use of a linear  to O/C parameterisation. The grey shaded 316 

region on Figure 9a indicates the uncertainty envelope for the linear best fit through both the literature and 317 

new experimental  data reported in this manuscript. The line of best fit is weighted by the standard 318 

deviations at each O/C ratio. Also shown for comparison are two previously proposed sets of linear 319 

parameterisations,7,53 which have been extrapolated to cover the same O/C range as the present study. The 320 

previous parameterisations are significantly different in gradient from that determined from the average of 321 

the available literature data, reflecting the much smaller data sets, limited range of organic species and 322 

narrower O/C ranges on which they were based. A similar data binning and fitting procedure was also 323 

performed for each of the data sub-sets (6 cases) identified in Figure 8 (Supplementary information Figure 1 324 

and Table 2). Although the uncertainties in the correlations is much lower for aerosol of known composition 325 

measured in the laboratory, as might be expected, the spread in the fitted correlations is such that no 326 

definitive conclusions can be made from the comparison of sub-saturated growth and critical supersaturation 327 

measurements. 328 

 329 

In Figure 9b we report the sensitivity of the predicted critical supersaturations to the value of  derived at 330 

varying O/C from the different parameterisations shown in Figure 9a. The spread in the  values from the 331 

literature survey for aerosol of a particular O/C, ignoring experimental errors, leads to a spread in the 332 

predicted critical supersaturations. Considering the data point at O/C = 0.56 in Figure 9b alone, the spread in 333 
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critical supersaturation arising from the error bar at this O/C ratio is –17 % to +34 % on a critical 334 

supersaturation of 0.36 % RH (where this is the value from a  of 0.10 ± 0.05). This is equivalent to a range 335 

of 0.30 to 0.48 % RH in critical supersaturation for an activating particle of 100 nm diameter and is larger 336 

than typical uncertainties in experimentally determined supersaturations, which are of the order ±0.04 % 337 

RH.53 However, the uncertainty in the new parameterisation provided here from fitting all of the literature 338 

data over the whole O/C range yields uncertainties in the critical supersaturation that are comparable to the 339 

errors associated with experimental measurements of supersaturations. Again at an O/C ratio of 0.56, the 340 

spread in critical supersaturations shown in Figure 9b is 0.33 to 0.43 % for a particle of 100 nm diameter. 341 

The envelope defining the parameterisation is: 342 

)0139.00048.0()/()017.0190.0(  CO        (5) 343 

As a further sensitivity test, Figure 10 shows the uncertainty in critical supersaturation with O/C for particles 344 

of three different diameters that would result from the uncertainty in the parameterisation of the dependence 345 

of  on O/C shown in Figure 9. CCN of different dry size become virtually indistinguishable in terms of their 346 

critical supersaturation when they have a composition commensurate with low O/C. 347 

 348 

From Figures 9 and 10, it can be concluded that a general parameterisation of the dependence of  on O/C, 349 

such as that shown by the grey envelope in Figure 9a, can provide an approximate yet appropriate indicator 350 

of the critical supersaturation and hygroscopic growth. Notably the variation in critical supersaturations 351 

predicted by the different parameterisations for the O/C dependence of  is considerably larger than 352 

identified by the grey shaded envelope in Figure 9a. Given that the different parameterisations are based on 353 

measurements performed on aerosols of different organic precursor type and oxidation mechanism, the 354 

disparity between them does suggest that more accurate treatments of hygroscopic growth and CCN 355 

activation must rely on different parameterisations for different chemical systems. 356 

 357 

V. SUMMARY 358 

We have reported new measurements of the hygroscopicity parameter  for chemical compounds with a 359 

range of O/C values and differing chemical functionalities. Measurements were made on single aerosol 360 

particles using aerosol optical tweezers and an electrodynamic balance, with excellent agreement seen 361 
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between the two techniques. As the RH was decreased, deviation in the apparent  from the constant value 362 

seen at high aw was observed, highlighting the need to make measurements of  at high aw in the dilute limit 363 

where ideality can be assumed. The variation in the hygroscopicity parameter  between compounds of even 364 

the same O/C ratio is found to be significant with, for example, a range in  values from 0.12 to 0.38 for 365 

compounds with an O/C of 1.  366 

 367 

A comprehensive review of all  values published in the literature to date along with their associated O/C 368 

ratios has been undertaken, encompassing field and laboratory studies, subsaturated and supersaturated 369 

measurements, and multi-component and pure component aerosol. The literature data, combined with the 370 

newly determined experimental values, showed a general positive correlation between  and O/C, in 371 

qualitative agreement with previously published results. We have presented a linear parameterisation of the 372 

correlation between  and O/C based on all of the published data for which both the  value and O/C ratio 373 

are known, showing a somewhat weaker dependence of  on O/C than previous parameterisations. The 374 

uncertainty in the predicted value of  resulting from this parameterisation leads to an uncertainty in the 375 

predicted critical supersaturation that is very similar to typical uncertainties associated with experimental 376 

measurements of critical supersaturations. However, it should be stressed that significant variations are 377 

observed between the  vs O/C parameterisations derived from measurements with different aerosol types, 378 

suggesting that the chemical complexity of a species hygroscopic response cannot be reliably captured by a 379 

single parameter such as O/C.  380 
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TABLES  664 

Table 1: A list of organic compounds for which hygroscopic growth was determined. Solubility data are 665 

taken from (a) the CRC Handbook of Chemistry and Physics,90 (b)  Gaivoronskii and Granzhan,91 (c) Attané 666 

and Doumani,92 and  (d) Higashiyama,93 with the measurement temperature in superscript. All compounds 667 

were sourced from Sigma-Aldrich, with the exception of glutaric acid (Acros Organics), maleic acid (Acros 668 

Organics), and citric acid (Fisher Scientific). The experimental technique used to determine  is given and 669 

those values are presented in the final column along with the corresponding aw. 670 

Compound O/C Solubility by 

mass 

Technique  (aw ± 0.02) 

Oleic acid (C18H34O2, >90 %) 0.11 - AOT 0.003 ± 0.001 

(0.60 - 0.75) 

 

Adipic acid (C6H10O4, ≥ 99.5 %) 0.67 1.8 %, b20˚C EDB 0.102 ± 0.009 (> 0.90) 

Glutaric acid (C5H8O4, 99 %) 0.80 51 %, c18˚C EDB 0.168 ± 0.030 (> 0.90) 

D-(+)-Raffinose (C18H32O16, ≥ 98.0 %) 0.89 12.5 %, a20˚C EDB 0.063 ± 0.012 (> (0.90) 

Sucrose (C12H22O11, ≥ 99.5 %) 0.92 67.1 %, a20˚C EDB 0.115 ± 0.005 (> 0.90) 

D-(+)-Trehalose (C12H22O11, ≥ 99 %) 0.92 68.9 %, d20˚C EDB 0.116 ± 0.014 (> 0.90) 

L-Ascorbic Acid (C6H8O6, ≥ 99.0 %) 1 25.2 %, a25˚C AOT 0.192 ± 0.064 (0.80) 

D-(+)-Galactose (C6H12O6, ≥ 99 %) 1 40.6 %, a20˚C AOT 

EDB 

 

0.212 ± 0.045 (0.80) 

0.192 ± 0.013 (> 0.90) 

D-(+)-Glucose (C6H12O6, ≥ 99.5 %) 1 45.0 %, a15˚C EDB 0.254 ± 0.015 (> 0.90) 

Maleic acid (C4H4O4, 99 %) 1 44.1 %, a25˚C EDB 0.367 ± 0.021 (> 0.90) 

D-Sorbitol (C6H14O6, ≥ 98 %) 1 41 %, a20˚C AOT 

EDB 

 

0.184 ± 0.011 (0.77) 

0.154 ± 0.003 (> 0.90) 

Succinic acid (C4H6O4, ≥ 99.0 %) 1 7.7 %, a25˚C EDB 0.216 ± 0.020 (> 0.90) 

trans-Aconitic acid (C6H6O6, 98 %) 1 20.9 %, a25˚C EDB 0.172 ± 0.010 (> 0.90) 

D-(+)-Xylose (C5H10O5, ≥ 99 %) 1 30 %, a25˚C AOT 0.179 ± 0.015 (0.78) 

Citric acid (C6H8O7, > 99.5 %) 1.17 59 %, a20˚C AOT 0.233 ± 0.035 (0.66) 

Malonic acid (C3H4O4, 99 %) 1.33 42.4 %, a20˚C EDB 0.292 ± 0.011 (> 0.90) 

L-(+)-Tartaric acid (C4H6O6, ≥ 99.5 %) 1.50 58 %, a20˚C EDB 0.220 ± 0.007 (> 0.90) 

Oxalic acid (C2H2O4, ≥ 99.0 %) 2 8.7 %, a20˚C EDB 0.504 ± 0.044 (> 0.90) 

  671 
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FIGURES 672 

Figure 1: (a) Predictions of the change in growth factor with RH and the retrieved value of  if measure-673 

ments were made at different RHs for (a) malonic acid, (b) levoglucosan, and (c) adipic acid from UNIFAC 674 

(E-AIM) (blue), UNIFAC with Peng parameters (E-AIM) (green), ADDEM (red) and AIOMFAC (black). 675 

 676 

 677 
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Figure 2: Correlated change in (a) RH, (b) particle radius, and (c) particle RI with time for an aqueous 679 

sucrose droplet with dry radius 4145 ± 11 nm held in AOT. 680 

 681 

 682 
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Figure 3: Refractive index values measured using a refractometer plotted against mfs, with 684 

quadratic fits applied to the experimental data. Extrapolation to mfs of one yields refractive index 685 

values for pure galactose (black), ascorbic acid (green), sorbitol (purple), xylose (red), and citric 686 

acid (orange) of 1.5515 ± 0.0187, 1.5863 ± 0.0320, 1.5260 ± 0.0024, 1.5197 ± 0.0024, and 1.4876 687 

± 0.0013  respectively. The shaded regions represent the standard error in the quadratic fits. 688 

Knowledge of the pure component refractive index is vital for determination of the aerosol droplet 689 

dry size, and in turn the GF. 690 

 691 

 692 
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Figure 4: (a) An example of the comparative kinetic measurement showing consecutive evaporation of pure 694 

water (grey) and tartaric acid (black) solution droplets into an RH of ~0.95. (b) The growth curve derived 695 

from the mass flux data averaged over all tartaric acid droplets and resolved at each size point, with an 696 

average taken every 200 points (equivalent to 2 s of mass flux). Uncertainty in GF lies within the bounds of 697 

the data points. Inset shows the growth factor as a function of measured mass flux, used to calculate the 698 

droplet water activity. 699 

 700 

 701 
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Figure 5: (a) Simulated evaporation profiles for droplets containing a fixed amount of a dissolved species 703 

with varying values of , illustrating the sensitivity of the EDB evaporation method for measuring 704 

hygroscopic growth. The inset shows the long time equilibrium behaviour. We present simulated data in 705 

order to show the effect of changing  while keeping all other variables the same, for instance how the 706 

density changes with radius. (b) As an example of the experimental data, measurement data sets of the 707 

evaporation kinetics from aqueous droplets of oxalic acid at 93.8 % RH (blue) and tartaric acid at 94.8 % RH 708 

(black). Both compounds had an initial concentration of 50.2 g L-1. 709 

 710 

 711 
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Figure 6: A comparison between experimental data obtained from AOT measurements (at lower water 713 

activity) and EDB measurements (at higher water activity) for five representative compounds: malonic acid, 714 

tartaric acid, galactose, sorbitol and adipic acid (dark to light grey points, top to bottom). The lines associated 715 

with galactose and sorbitol represent linear fits using data from both techniques. The break in the water 716 

activity axis and the change in scale should be noted. 717 
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Figure 7: Experimentally determined  values from AOT (red) and EDB (blue) measurements as a function 721 

of O/C and data from the literature survey described in the text (grey). 722 

 723 
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Figure 8: Review of literature data showing the relationship between O/C and , with the three 726 

panels highlighting data recorded (a) at subsaturated RH (red) and supersaturated RH (grey), (b) in 727 

field studies (red) and in laboratory studies (grey) and (c) where the O/C of the aerosol was well-728 

defined (red), and where O/C was inferred from AMS measurements (grey).   729 
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Figure 9: All new experimental and literature data binned by O/C in intervals of 0.1 in terms of (a)  and (b) 733 

predicted critical supersaturation (for a 100 nm diameter aerosol particle). The error bars represent the 734 

standard deviation of the average reported  value, and do not include any experimentally associated error 735 

with each of the measurements reported in the literature. A linear fit to this binned data for  and O/C has 736 

been included (grey shaded area), along with previously proposed linear relationships by Chang et al.53 737 

(green shaded area) and Duplissy et al.7 (red lines).  738 
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Figure 10: Variation in predicted critical supersaturations with O/C from the linear fit (and uncertainties) to  742 

for the experimental and literature data. The shaded areas represent aerosol droplets of different dry 743 

diameter: 50 nm, 100 nm, and 150 nm, from top to bottom. 744 
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