3,234 research outputs found

    Quantum state-independent contextuality requires 13 rays

    Get PDF
    We show that, regardless of the dimension of the Hilbert space, there exists no set of rays revealing state-independent contextuality with less than 13 rays. This implies that the set proposed by Yu and Oh in dimension three [Phys. Rev. Lett. 108, 030402 (2012)] is actually the minimal set in quantum theory. This contrasts with the case of Kochen-Specker sets, where the smallest set occurs in dimension four.Comment: 8 pages, 2 tables, 1 figure, v2: minor change

    Minimal true-implies-false and true-implies-true sets of propositions in noncontextual hidden variable theories

    Full text link
    An essential ingredient in many examples of the conflict between quantum theory and noncontextual hidden variables (e.g., the proof of the Kochen-Specker theorem and Hardy's proof of Bell's theorem) is a set of atomic propositions about the outcomes of ideal measurements such that, when outcome noncontextuality is assumed, if proposition AA is true, then, due to exclusiveness and completeness, a nonexclusive proposition BB (CC) must be false (true). We call such a set a {\em true-implies-false set} (TIFS) [{\em true-implies-true set} (TITS)]. Here we identify all the minimal TIFSs and TITSs in every dimension d3d \ge 3, i.e., the sets of each type having the smallest number of propositions. These sets are important because each of them leads to a proof of impossibility of noncontextual hidden variables and corresponds to a simple situation with quantum vs classical advantage. Moreover, the methods developed to identify them may be helpful to solve some open problems regarding minimal Kochen-Specker sets.Comment: 9 pages, 7 figure

    Memory cost of quantum contextuality

    Get PDF
    The simulation of quantum effects requires certain classical resources, and quantifying them is an important step in order to characterize the difference between quantum and classical physics. For a simulation of the phenomenon of state-independent quantum contextuality, we show that the minimal amount of memory used by the simulation is the critical resource. We derive optimal simulation strategies for important cases and prove that reproducing the results of sequential measurements on a two-qubit system requires more memory than the information carrying capacity of the system.Comment: 18 pages, no figures, v2: revised for clarit

    Kochen-Specker set with seven contexts

    Get PDF
    The Kochen-Specker (KS) theorem is a central result in quantum theory and has applications in quantum information. Its proof requires several yes-no tests that can be grouped in contexts or subsets of jointly measurable tests. Arguably, the best measure of simplicity of a KS set is the number of contexts. The smaller this number is, the smaller the number of experiments needed to reveal the conflict between quantum theory and noncontextual theories and to get a quantum vs classical outperformance. The original KS set had 132 contexts. Here we introduce a KS set with seven contexts and prove that this is the simplest KS set that admits a symmetric parity proof.Comment: REVTeX4, 7 pages, 1 figur

    Quantum social networks

    Get PDF
    We introduce a physical approach to social networks (SNs) in which each actor is characterized by a yes-no test on a physical system. This allows us to consider SNs beyond those originated by interactions based on pre-existing properties, as in a classical SN (CSN). As an example of SNs beyond CSNs, we introduce quantum SNs (QSNs) in which actor is characterized by a test of whether or not the system is in a quantum state. We show that QSNs outperform CSNs for a certain task and some graphs. We identify the simplest of these graphs and show that graphs in which QSNs outperform CSNs are increasingly frequent as the number of vertices increases. We also discuss more general SNs and identify the simplest graphs in which QSNs cannot be outperformed.Comment: REVTeX4, 6 pages, 3 figure

    Basic exclusivity graphs in quantum correlations

    Get PDF
    A fundamental problem is to understand why quantum theory only violates some noncontextuality (NC) inequalities and identify the physical principles that prevent higher-than-quantum violations. We prove that quantum theory only violates those NC inequalities whose exclusivity graphs contain, as induced subgraphs, odd cycles of length five or more, and/or their complements. In addition, we show that odd cycles are the exclusivity graphs of a well-known family of NC inequalities and that there is also a family of NC inequalities whose exclusivity graphs are the complements of odd cycles. We characterize the maximum noncontextual and quantum values of these inequalities, and provide evidence supporting the conjecture that the maximum quantum violation of these inequalities is exactly singled out by the exclusivity principle.Comment: REVTeX4, 7 pages, 2 figure

    El frijol en El Salvador: implicaciones para la investigacion agricola

    Get PDF
    Results of a study on bean cultivation in El Salvador are given. Aspects analyzed were as follows: consumption structure (apparent, per capita, and rural-urban; preferences, consumption and cooking ways, and nutritive value); area, production, and yields (at national and regional levels, by cropping system, and by planting time), production constraints (abiotic, biotic, and technological factors), and production perspectives. Recommendations are included on future research activities. (CIAT

    Compact set of invariants characterizing graph states of up to eight qubits

    Full text link
    The set of entanglement measures proposed by Hein, Eisert, and Briegel for n-qubit graph states [Phys. Rev. A 69, 062311 (2004)] fails to distinguish between inequivalent classes under local Clifford operations if n > 6. On the other hand, the set of invariants proposed by van den Nest, Dehaene, and De Moor (VDD) [Phys. Rev. A 72, 014307 (2005)] distinguishes between inequivalent classes, but contains too many invariants (more than 2 10^{36} for n=7) to be practical. Here we solve the problem of deciding which entanglement class a graph state of n < 9 qubits belongs to by calculating some of the state's intrinsic properties. We show that four invariants related to those proposed by VDD are enough for distinguishing between all inequivalent classes with n < 9 qubits.Comment: REVTeX4, 9 pages, 1 figur
    corecore