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A fundamental problem is to understand why quantum theory only violates some noncontextuality (NC) 
inequalities and identify the physical principles that prevent higher-than-quantum violations. We prove that 
quantum theory only violates those NC inequalities whose exclusivity graphs contain, as induced subgraphs, 
odd cycles of length five or more, and/or their complements. In addition, we show that odd cycles are the 
exclusivity graphs of a well-known family of NC inequalities and that there is also a family of NC inequalities 
whose exclusivity graphs are the complements of odd cycles. We characterize the maximum noncontextual and 
quantum values of these inequalities, and provide evidence supporting the conjecture that the maximum 
quantum violation of these inequalities is exactly singled out by the exclusivity principle.

I. INTRODUCTION

Quantum contextuality, namely, the fact that the quantum
correlations between the results of compatible measurements
cannot be reproduced with noncontextual hidden variable
(NCHV) theories [1–3] is behind a wide spectrum of ap-
plications of quantum theory (QT) to communication and
computation [4–9]. Quantum contextual correlations are ex-
perimentally detected through the violation of inequalities
satisfied by NCHV models, called noncontextuality (NC)
inequalities [10–13]. A fundamental problem is to understand
why QT only violates some NC inequalities and identify the
physical principles that prevent higher-than-quantum viola-
tions of these inequalities [14–17].

In this paper we investigate this problem. In Sec. II we
introduce a tool that we will use throughout the paper, namely,
the exclusivity graph. In Sec. III, we present a necessary
condition for the existence of quantum contextual correlations:
We prove that QT violates only those NC inequalities whose
exclusivity graphs contain, as induced subgraphs, odd cycles
on five or more vertices and/or their complements. In Sec. IV,
we show that a lower bound of the dimension (i.e., of the
number of perfectly distinguishable states) of the quantum
system that is used to violate an NC inequality can be obtained
by identifying induced subgraphs in the exclusivity graph of
the NC inequality.

The result in Sec. III suggests that NC inequalities whose
exclusivity graph is either an odd cycle or its complement are
especially important for understanding the way QT violates
NC inequalities. In Sec. V, we show that each of these types of
exclusivity graphs is connected to a family of NC inequalities
and provide the quantum states and measurements leading
to the maximum quantum violation. Finally, in Sec. VI we
present some results that suggest that the exclusivity principle,
namely, that the sum of the probabilities of a set of pairwise
exclusive events cannot exceed 1, explains the maximum
quantum violation of all the NC inequalities discussed in
Sec. V.
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II. THE EXCLUSIVITY GRAPH OF AN NC INEQUALITY

Two different graphs can be associated to any given NC
inequality. On one hand, the graph in which vertices represent
the observables measured in the NC inequality and adjacent
vertices represent those which are compatible [18]. This graph
is the so-called compatibility graph. For example, consider the
Clauser-Horne-Shimony-Holt (CHSH) inequality [20],

β = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉
NCHV
� 2, (1)

where 〈AiBj 〉 denotes the mean value of the product of the
results of measuring the observables Ai and Bj , each of them

with possible results either −1 or 1, and
NCHV
� 2 indicates that

2 is the maximum value for β for NCHV theories. In this
inequality there are four observables: A0, B0, A1, and B1.
All possible pairs of them are compatible except for the pairs
(A0,A1) and (B0,B1). Therefore, the compatibility graph is the
one depicted in Fig. 1(a).

On the other hand, by taking into account that

±〈AiBj 〉 = 2[P (1, ± 1 | i,j ) + P (−1, ∓ 1 | i,j )] − 1, (2)

where P (a,b | i,j ) is the probability of the event “the result a

has been obtained when measuring Ai and the result b has been
obtained when measuring Bj ,” inequality (1) can be written as

S = β

2
+ 2

= P (1,1 | 0,0) + P (−1, − 1 | 0,0) + P (1,1 | 0,1)

+P (−1, − 1 | 0,1) + P (1,1 | 1,0) + P (−1, − 1 | 1,0)

+P (1, − 1 | 1,1) + P (−1,1 | 1,1)
NCHV
� 3, (3)

where the left-hand side is now a convex sum of probabilities
of events. A new graph can be associated to the set of events,
one in which the vertices represent the events and adjacent
vertices represent events that cannot occur simultaneously (i.e.,
exclusive events). This is the so-called exclusivity graph [19].
For example, the exclusivity graph for the CHSH inequality
(3) is depicted in Fig. 1(b).

The interest of the exclusivity graph G is that the maximum
value of S for NCHV theories is exactly given by the
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FIG. 1. (a) The compatibility graph of the CHSH experiment. (b)
The exclusivity graph of the CHSH inequality (3).

independence number of the graph α(G) (which is the
maximum number of pairwise nonadjacent vertices in G),
while the maximum value in QT is upper bounded (and
frequently exactly given) by the Lovász number of the graph
ϑ(G) [19].

The important point is that any experiment producing
quantum contextual correlations can be associated to an
exclusivity graph G for which α(G) < ϑ(G). Hereafter, we
will refer to a graph with this property as a quantum contextual
graph (QCG), and to a graph for which α(G) = ϑ(G) as a
quantum noncontextual graph (QNCG).

A subgraph H of a graph G is said to be induced if, for
any pair of vertices i and j of H , ij is an edge of H if and
only if ij is an edge of G. For example, a graph G has an
induced pentagon if it is possible to remove from G all but
five vertices (and their corresponding edges) so that we end up
with a pentagon with no additional edges.

III. BASIC EXCLUSIVITY GRAPHS

Result 1. The exclusivity graph of any NC inequality
violated by QT contains, as induced subgraphs, odd cycles
on five or more vertices and/or their complements.

This result is based on two fundamental results in graph
theory. The strong perfect graph theorem and the (weak)
perfect graph theorem. Perfect graphs were introduced [21]
in connection to the problem of the zero-error capacity of a
noisy channel [22]: Shannon observed that ω(G∗n) = ω(G)n

for graphs such that ω(G) = χ (G), which made the problem
of characterizing the Shannon capacity of such graphs more
tractable [G∗n is the disjunctive product of n copies of G, ω(G)
is the clique number, and χ (G) is the chromatic number of G;
in general, ω(G) � χ (G)]. Berge defined perfect graphs as
those graphs G for which ω(H ) = χ (H ) for each induced
subgraph H ⊆ G. Berge observed that all odd cycles Cn

with n � 5 (known in graph theory as “odd holes”) and
their complements C̄n (known as “odd antiholes”) satisfy
ω(G) < χ (G). From this result, Berge conjectured that a graph
G is perfect if and only if G has no odd hole or odd antihole
as induced subgraph (strong perfect graph conjecture). This
conjecture has been recently proven, and it is now known as
the strong perfect graph theorem [23]. The simplest odd holes
and antiholes are illustrated in Fig. 2.

The perfect graph conjecture (due also to Berge), which was
later proved by Lovász [24] and is now known as the (weak)
perfect graph theorem, states that if G is a perfect graph, then
its complement Ḡ is also a perfect graph.
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FIG. 2. Cj denote the odd cycles on j vertices and C̄j their
complements. The figure depicts the cases j = 5,7,9,11. Notice that
C5 and C̄5 are isomorphic.

Theorem 1. Let G be the exclusivity graph of an NC
inequality. If G is a perfect graph, then G is a QNCG and,
as a consequence, the NC inequality is not violated by QT.

Proof. If G is perfect, then ω(G) = χ (G). On the other
hand, according to the sandwich theorem [25], ω(G) �
ϑ(Ḡ) � χ (G) for any graph G. Hence, G perfect implies
ω(G) = ϑ(Ḡ) = χ (G). Given that ω(G) = α(Ḡ), we obtain
α(Ḡ) = ϑ(Ḡ), i.e., if G is a perfect graph, then Ḡ is a
QNCG. Applying now the (weak) perfect graph theorem, if
G is perfect, then Ḡ is also perfect. Therefore, repeating
the previous argument the other way around we conclude
that G is a QNCG as well: α(G) = ϑ(G). This finishes the
proof. �

Corollary 1. If G is a QCG, i.e., if G is the exclusivity graph
of an NC inequality violated by QT, then G is not perfect.
Consequently, by the strong perfect graph theorem, G must
contain odd holes and/or odd antiholes as induced subgraphs.

This proves Result 1.
Observation 1. An NC inequality not violated by QT may

contain an NC inequality violated by QT. This means that,
even if the exclusivity graph of the initial NC inequality is not
a QCG, the exclusivity graph of the initial NC inequality may
have an induced subgraph that is a QCG.

Observation 2. No odd cycle or complement of an odd
cycle has an odd cycle or a complement of an odd cycle as
an induced subgraph. This suggests that odd cycles and their
complements could be used as a basis for a decomposition of
any exclusivity graph.

Observation 3. The basic exclusivity graphs necessary for
quantum contextuality are the same basic graphs necessary for
graph nonperfectness.

Proof. A graph G is called almost perfect [26,27] if there
exists at least one vertex v ∈ V (G) such that the graph
G − v obtained by deleting v (and its incident edges) is
perfect. Trivially, every perfect graph is almost perfect. There
are many nonperfect graphs which are almost perfect. The
interesting point is that there are nonperfect graphs for which
the deletion of any vertex gives rise to a perfect graph: A
graph G is minimal (or minimally) imperfect if it is not
perfect but every induced subgraph H ⊂ G is perfect [i.e.,
ω(G) < χ (G) but ω(H ) = χ (H ),∀H ⊂ G, H induced]. Note
that, as a consequence of the strong perfect graph theorem, any



nonperfect graph is either an odd hole or an odd antihole, or 
must contain such odd holes and/or odd antiholes as induced 
subgraphs. Hence, the only minimal imperfect graphs are 
the odd holes and odd antiholes. Moreover, given that every 
induced subgraph H ⊂ Gm of a minimal imperfect graph Gm 
is perfect, then the deletion of an arbitrary vertex v ∈ V (Gm) 
produces an induced subgraph of Gm which is a perfect graph 
[28]. Therefore, minimal imperfect graphs are not only almost 
perfect but the only almost-perfect graphs for which almost 
perfectness does not depend on the vertex choice. That is why 
odd holes and antiholes are the necessary basic graphs for 
nonperfectness: Starting from an arbitrary nonperfect graph, 
and deleting vertex by vertex trying to preserve nonperfectness 
in the subsequent resulting induced subgraphs, eventually 
leads to a minimal imperfect graph. Since minimal imperfect 
graphs are also QCGs and all QCGs are nonperfect (Corollary 
1), then minimal imperfect graphs are the simplest ones giving
rise to quantum contextuality. �

IV. BASIC EXCLUSIVITY GRAPHS AND THE DIMENSION
OF THE QUANTUM SYSTEM

A distinguishing feature of the complements of the odd
cycles is that their presence as induced subgraphs in an
exclusivity graph G provides valuable information about the
minimum dimension that a quantum system must have in
order to generate events reproducing all the relationships of
exclusivity described by G. While any of the relationships
of exclusivity in an odd cycle can be reproduced using a
quantum three-dimensional system, this is impossible for the
relationships of exclusivity described by the complement of
an odd cycle with n � 7 vertices.

Result 2. If an exclusivity graph corresponding to an NC
inequality has as an induced subgraph a complement of an
odd cycle on n � 5 vertices, then the quantum dimension
of the systems whose events reproduce these exclusivity
relationships is, at least, 
2n/3�.

Proof. A (faithful) orthonormal representation (OR) of G

is an assignment of unit vectors {|vj 〉}nj=1 to the vertices of G

such that orthogonal vectors are assigned to the vertices (iff) if
they are adjacent. Vectors {|vj 〉}nj=1 represent the states of the
system after the corresponding events; vectors are orthogonal
if (iff) events are exclusive.

Let G be an exclusivity graph containing an odd antihole C̄n

as induced subgraph. To obtain a lower bound of the dimension
d of the quantum system producing events whose exclusivity
relationships are described exactly by G, we can study the
constraints imposed by the presence of C̄n. Note that for any
two different vertices u,v ∈ C̄n, N (u) �= N (v), where N (i)
denotes the neighborhood of vertex i (see Fig. 2). This implies
that a faithful OR of G must assign different vectors to u and v.
As a consequence, we can lower bound d by identifying sub-
graphs in C̄n which are geometrically impossible in a space of
lower dimension, assuming that distinct vertices are assigned
distinct vectors. For example, the simplest impossible graph
in d = 1 consists of two nonadjacent vertices in C̄n; in d = 2,
three vertices, one of them adjacent to the other two. From
these two impossible graphs, one can recursively construct
impossible graphs in any d by adding two vertices adjacent to
all vertices of an impossible graph in d − 2. For example, if C̄n

contains a square, then d > 3. In brief, the graph F obtained by
deleting 
d/2� disjoint edges from a d-vertex complete graph
Kd is an impossible subgraph in dimension d − 1 of C̄n.

To lower bound d, we must consider three cases:
(C1) If n = 3m,m ∈ N, take the subgraph F induced in
C̄n by vertices {1,2,4,5, . . . ,3i + 1,3i + 2, . . . ,3(m − 1) +
1,3(m − 1) + 2} (see Fig. 2). F is isomorphic to K2m minus
m disjoint edges and is, therefore, an impossible graph in
d = 2m − 1. Hence, C̄n is not faithfully representable in d =
2m − 1 = 2n

3 − 1 = 
2n/3�−1. The same holds true for G ⊇
C̄n. (C2) If n = 3m + 1,m ∈ N, take the subgraph F induced
in C̄n by vertices {1,2,4,5, . . . ,3i + 1,3i + 2, . . . ,3(m − 1) +
1,3(m − 1) + 2}. F is isomorphic to K2m minus m disjoint
edges and is, therefore, an impossible graph in d = 2m − 1.
Hence, C̄n is not faithfully representable in d = 2m − 1 =
2n−1

3 − 1 = 
2n/3�−1. The same holds true for G ⊇ C̄n.
(C3) If n = 3m + 2,m ∈ N, take the subgraph F induced
in C̄n by vertices {1,2,4,5, . . . ,3i + 1,3i + 2, . . . ,3(m − 1) +
1,3(m − 1) + 2,3m + 1}. F is isomorphic to K2m+1 minus
m disjoint edges and, therefore, it is an impossible graph in
d = 2m. Hence, C̄n is not faithfully representable in d = 2m =
2(n−2)

3 = 
2n/3�−1. The same holds true for G ⊇ C̄n. �

V. NC INEQUALITIES REPRESENTED BY BASIC
EXCLUSIVITY GRAPHS

Result 3. For any cycle Cn with n odd � 5, there is an NC
inequality such that

S(Cn)
NCHV
� α(Cn)

Q
� ϑ(Cn), (4)

where S(Cn) is a sum of probabilities of events matching

the relationships of exclusivity represented by Cn,
Q
� ϑ(Cn)

indicates that its maximum value in QT is exactly ϑ(Cn), and

α(Cn) = n − 1

2
, (5a)

ϑ(Cn) = n cos
(

π
n

)
1 + cos

(
π
n

) (5b)

are, respectively, the independence number and the Lovász
number of Cn.

Proof. By explicit construction. For any n odd � 5, the
events in the following sum of probabilities of events:

S(Cn) =
n∑

i=1

P

(
1,0|i,i +

[
n

2

])
, (6)

where the sum in each event is taken modulo n, and numerating
the vertices of Cn as in Fig. 2, have exactly the relationships
of exclusivity represented by Cn.

The fact that the maximum value of S(Cn) for NCHV
theories is α(Cn) is proven in [19]. The fact that ϑ(Cn) is
not only an upper bound of the maximum quantum value, but
a value that QT actually reaches can be seen by preparing the
system in the quantum state

〈ψ | = (1,0,0) (7)

and measuring the observables represented by

j = |vj 〉〈vj |, (8)



where

〈vj | =
[

cos φ, sin φ cos

(
2πj

n

)
, sin φ sin

(
2πj

n

)]
, (9)

with j = 1, . . . ,n, cos2 φ = ϑ(Cn)
n

. �
The vectors (9) constitute a Lovász-optimum OR of Cn.

An OR is Lovász optimum if there is a unit vector |ψ〉, called
handle, such that

∑n
j=1 |〈vj |ψ〉|2 = ϑ(G). In our case, the

handle is given by Eq. (7).
Result 4. For any complement of a cycle C̄n with n odd

� 5, there is an NC inequality such that

S(C̄n)
NCHV
� α(C̄n)

Q
� ϑ(C̄n), (10)

where

α(C̄n) = 2, (11a)

ϑ(C̄n) = 1 + cos
(

π
n

)
cos

(
π
n

) . (11b)

Proof. For n = 5, the proof of Result 3 is valid, since C5

and C̄5 are isomorphic. For any n odd � 7, the events in the
following sum of probabilities of events:

S(C̄n) =
n∑

i=1

P (1,0, . . . ,0|i,i + 2, . . . ,i + n − 3), (12)

where the sum in each event is taken modulo n, and numerating
the vertices of C̄n as in Fig. 2, have all the relationships of
exclusivity represented by C̄n.

The fact that the maximum value of S(C̄n) for NCHV
theories is α(C̄n) is proven in [19]. The fact that ϑ(C̄n) is
not only an upper bound of the maximum quantum value, but
a value that QT actually reaches can be seen by preparing the
system in the quantum state

〈ψ | = (1,0, . . . ,0) (13)

and measuring the observables represented by

j = |vj 〉〈vj |, (14)

where the kth component of 〈vj |, denoted as vj,k , with 0 �
j � n − 1 and 0 � k � n − 3, is given by

vj,0 =
√

ϑ(C̄n)

n
, (15a)

vj,2m−1 = Tj,m cos (Rj,m), (15b)

vj,2m = Tj,m sin (Rj,m), (15c)

where m = 1,2, . . . , n−3
2 and

Tj,m = (−1)j (m+1)

√√√√2
(

cos
(

π
n

) + (−1)m+1 cos
[ (m+1)π

n

])
n cos

(
π
n

) ,

(16a)

Rj,m = j (m + 1)π

n
. (16b)

�

The vectors defined by Eqs. (15) and (16) constitute a
Lovász-optimum OR of C̄n with handle given by Eq. (13).

Note that, for every NC inequality presented in this section,
the compatibility graph of the observables is isomorphic to the
exclusivity graph of the events. This follows from the fact that
every observable in these NC inequalities is of the form (8)
and every event is of the type 1,0, . . . ,0|i,j, . . . ,z.

VI. THE EXCLUSIVITY PRINCIPLE EXPLAINS THE
QUANTUM VIOLATION OF THE NC INEQUALITIES
REPRESENTED BY BASIC EXCLUSIVITY GRAPHS

It has been recently proved that the principle that the sum
of probabilities of a set of pairwise exclusive events cannot
be higher than 1 [1,17,19,29–33], which we will hereafter call
the exclusivity (E) principle, exactly singles out the maximum
quantum value for the NC inequality associated to C5 [17].
The principle of local orthogonality [31] may be seen as the E
principle restricted to Bell scenarios [32]. Note, however, that
while for a given graph G, there is always an NC inequality for
which QT reaches ϑ(G) [19], this is not true if “NC inequality”
is replaced by “Bell inequality” [34].

A natural question, especially important in the light of
Result 1, is whether the E principle may single out the
maximum quantum value for the NC inequalities associated to
Cn and C̄n for n odd � 7 presented in Sec. V.

Observation 4. “[T]he evidence that the Shannon capacity
of odd cycles is extremely close to the value of the Lovász theta
function” [35] strongly suggests that the E principle singles
out the maximum quantum value for the NC inequalities (10).
This implies that the E principle also singles out the maximum
quantum value for the NC inequalities (4). In any case, it is
very unlikely that any actual experiment would allow us to
distinguish nature’s maximum violation (assumed to be given
by QT) from the maximum value allowed by the E principle.

Proof. Reference [19] shows that, for a given exclusivity
graph G, the maximum value satisfying the E principle
(applied only to one copy of G) for the sum S(G) of
probabilities of events whose relationships of exclusivity
are represented by G is given by the fractional packing
number of G, α∗(G,
), which is equal to max

∑
i∈V (G) wi ,

where the maximum is taken over all 0 � wi � 1 and for all
cliques (subsets of pairwise linked vertices) Cj ∈ 
, under
the restriction

∑
i∈Cj

wi � 1 [22,36]. When 
 is the set of
all cliques of G, then α∗(G,
) is also called the Rosenfeld
number p(G) [37]. As shown in [17], for vertex transitive
graphs (such us, e.g., Cn and C̄n), the maximum value of
S(G) satisfying the E principle applied to n copies is given
by n

√
p(G∗n), where G is the exclusivity graph of the NC

inequality. Recall that the maximum quantum value is given by
ϑ(G). For C5, p(C5) = 5

2 and
√

p(C5 ∗ C5) = ϑ(C5) = √
5,

which proves that the E principle applied to two copies of C5

singles out the maximum quantum value of S(C̄5). The whole
process can be summarized in the following expression:

S(C̄5)
NCHV
� 2

Q, E2
�

√
5

E1
� 5

2 , (17)

where
NCHV
� 2 indicates that the maximum value for NCHV

theories is 2,
Q, E2
�

√
5 indicates that the maximum value for



QT and for theories satisfying the E principle applied to two

copies of C5 is
√

5, and
E1
� 5

2 indicates that the maximum value
for theories satisfying the E principle applied to one copy of
C5 is 5

2 .
For C7, with n = 1,2,3, n

√
p(C∗n

7 ) = 7
2 . Since p(C7) = 7

2 ,
this means that, for C7, the E principle applied to two or three
copies of C7 does not tell us more than the E principle applied
to one copy. However, the E principle applied to four copies
of C7 leads us to a value closer to the maximum quantum one.
This follows from [38], where it is proven that

4

√
p
(
C∗4

7

)
� 7

4
√

17
≈ 3.4474. (18)

The situation is similar for Cn with n odd � 9: the value singled
out by the E principle seems to converge to the maximum
quantum one as more copies of Cn are taken into account, but
there is no clear evidence that this actually happens.

However, note that odd cycles are sparser than their
complements. As a result, when the E principle is applied
to multiple copies of complements of odd cycles, the resulting
value approaches the maximum quantum one much faster.
Consider, for example, C̄7. From [39], we obtain that

p(C̄7) = 7

3
>

√
p
(
C̄∗2

7

) = 7√
10

> 3

√
p
(
C̄∗3

7

) = 7
3
√

33
. (19)

Therefore,

S(C̄7)
NCHV
� 2

Q
� 2.1099

E3
� 2.1824

E2
� 2.2136

E1
� 2.3333.

(20)

For four copies of C̄7, only bounds of ω(C̄∗4
7 ) are known [40],

but it is clear that the value is even closer to the maximum
quantum one after considering the fourth copy, since

7
4
√

115
≈ 2.1376 � 4

√
p
(
C̄∗4

7

)
� 7

4
√

108
≈ 2.1714. (21)

For five copies, the best bounds known [40] are also compatible
with a value even closer to the maximum quantum one.

The point is that there is strong evidence [35] that the
Shannon capacity of odd cycles, �(Cn), is extremely close
to their Lovász number, ϑ(Cn). This is important since

lim
m→∞

m

√
p
(
C̄∗m

n

) = n

limm→∞ m

√
ω

(
C̄∗m

n

) = n

�(Cn)
(22)

(this holds because Cn and C̄n are vertex transitive), which,
if �(Cn) = ϑ(Cn), would be equal to ϑ(C̄n), which is exactly
the maximum quantum value for C̄n.

If the E principle singles out the maximum quantum value
of inequalities (10), then it also singles out the maximum
quantum value of inequalities (4). To see it, consider one
experiment testing the inequality (10) for a given n, and a
completely independent experiment testing the inequality (4)
for the same n. Notice that the exclusivity graph of the events
defined by taking one event of the first inequality and the
corresponding event of the second inequality is the complete
graph on n vertices, since the exclusivity graphs of the two
inequalities are complementary. Therefore, the E principle

imposes that the sum of the probabilities of the n events
constructed this way cannot exceed 1. Take into account that
each of these probabilities is the product of the probability
of the event in the first inequality times the probability of
the corresponding event in the second inequality, since the
corresponding experiments are independent. Assume now that
the E principle predicts that the maximum of the first inequality
is ϑ(C̄n) and that the maximum value of the first inequality
is reached when all the probabilities are equal. Assuming
that the maximum value of the second inequality is also
reached when all the probabilities are equal, and recalling
that ϑ(Cn)ϑ(C̄n) = n, we are led to the conclusion that the
maximum value allowed by the E principle for the second
inequality cannot be higher than ϑ(Cn), which is precisely the
maximum value in QT. �

VII. CONCLUSIONS

Here we have proven that QT only violates a particular kind
of NC inequalities: those whose exclusivity graph contains
some basic subgraphs, odd cycles with five or more vertices
and their complements (Result 1). We have also shown that the
presence of some of these subgraphs provides a lower bound to
the minimum dimension that a quantum system must have to
make the corresponding NC inequality experimentally testable
(Result 2).

In addition, we have shown that there is a family of
NC inequalities violated by QT whose exclusivity graphs
are precisely odd cycles (Result 3). This result is not new
[18,19,41]. The interesting result is that we have shown that
there is another family of NC inequalities violated by QT
whose exclusivity graphs are the complements of odd cycles
(Result 4). We have described how to reach the maximum
quantum value for each member of this family.

Finally, we have shown evidences that suggest that the
maximum quantum violation of the inequalities in Results
3 and 4 are singled out by the E principle. This adds new
examples to the list of inequalities whose maximum quantum
value is singled out by this principle [17]. The fact that the
exclusivity graphs of these NC inequalities are present in
the exclusivity graph of any NC inequality violated by QT
(Result 1) suggests that the E principle may be fundamental
for quantum correlations.
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APPENDIX: BASIC EXCLUSIVITY GRAPHS INSIDE THE
EXCLUSIVITY GRAPHS OF SOME NC INEQUALITIES

Table I shows the number of induced basic exclusivity
graphs inside some NC inequalities and Kochen-Specker (KS)
proofs. The absence of induced odd antiholes may explain why
the NC inequalities associated to the exclusivity graphs of type
(ii) were not pointed out before. To our knowledge, the first
time a type (ii) graph with n � 7 was identified as a QCG is
in [42].



TABLE I. Number of induced basic exclusivity graphs in some NC inequalities and KS proofs. The column “Graph” gives the standard
name in graph theory, “Vertices” indicates its number of vertices, “Dimension” indicates the minimum dimension of the quantum system
needed to define events with the corresponding exclusivity relationships.

NC inequality/KS proof Graph Vertices Dimension C5 C7 C̄7 C9 C̄9

KCBS [11] C5 5 3 1 0 0 0 0
CHSH [20] Ci8(1,4) 8 4 8 0 0 0 0
S3 [8,43] 10 4 10 0 0 0 0
KCBS-twin [44] J (5,2) 10 6 12 0 0 0 0
Mermin [45] Complement of Shrikhande 16 8 96 0 0 0 0
KS-18 [46,47] 18 4 144 108 0 12 0
YO [48] and its tight version [49] 22 3 288 384 0 0 0
KS-24 [50] 24 4 576 576 0 192 0
KS-31 [51] 31 3 70 184 0 248 0
KS-33 [50] 33 3 72 84 0 128 0
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Portillo, http://www.ii.uib.no/˜larsed/quantum_graphs/.
[43] E. Amselem, L. E. Danielsen, A. J. López-Tarrida, J. R. Portillo,
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