234 research outputs found
Delayed response of the ionosphere to solar EUV variability
Physical and chemical processes in the ionosphere are driven by
complex interactions with the solar radiation. The ionospheric plasma is in
particular sensitive to solar EUV and UV variations with a time delay between
one and two days. This delay is assumed to be related to thermospheric
transport processes from the lower ionosphere to the F region. In previous
analyses, the delay has been investigated using the F10.7 index. Here we
present preliminary results of the ionospheric delay based on a comprehensive
and reliable database consisting of GNSS TEC Maps and EUV spectral flux data.
We plan to specify the various dependencies from geographic/geomagnetic
location, altitude, season, local time, geophysical and solar radiation
conditions such as the solar activity level. The first results for
dependencies from seasons and wavelengths regions of the EUV are presented in
this paper. These results can provide more insight into ionospheric processes
and are of interest for applications dependent on reliable ionospheric
weather forecasts, e.g. GNSS error analyses, prediction and mitigation.</p
Relationship between the learning styles preferences and academic achievement
The individual learning differences that have been much explored relate to differences in personality, learning styles, strategies and conceptual of learning. This article studies the learning style profile exhibited by students towards the academic achievement in Malaysian Polytechnic. The relationship between learning styles of Polytechnic students and their academic achievement based on VARK learning styles model. The target population was international business students of Malaysian Polytechnic. By means of randomly sampling method, 103 students were selected as sample of research. By descriptive - survey research method and a questionnaire adapted from VARK Learning Style Index, required data were collected. According to the results, no significantly difference between learning style and academic achievement of students. Students academic achievement was quite similar to their individual learning styles. These facts reveal that each learning style has its own strengths and weaknesses
A novel application of quantile regression for identification of biomarkers exemplified by equine cartilage microarray data
<p>Abstract</p> <p>Background</p> <p>Identification of biomarkers among thousands of genes arrayed for disease classification has been the subject of considerable research in recent years. These studies have focused on disease classification, comparing experimental groups of effected to normal patients. Related experiments can be done to identify tissue-restricted biomarkers, genes with a high level of expression in one tissue compared to other tissue types in the body.</p> <p>Results</p> <p>In this study, cartilage was compared with ten other body tissues using a two color array experimental design. Thirty-seven probe sets were identified as cartilage biomarkers. Of these, 13 (35%) have existing annotation associated with cartilage including several well-established cartilage biomarkers. These genes comprise a useful database from which novel targets for cartilage biology research can be selected. We determined cartilage specific Z-scores based on the observed M to classify genes with Z-scores ≥ 1.96 in all ten cartilage/tissue comparisons as cartilage-specific genes.</p> <p>Conclusion</p> <p>Quantile regression is a promising method for the analysis of two color array experiments that compare multiple samples in the absence of biological replicates, thereby limiting quantifiable error. We used a nonparametric approach to reveal the relationship between percentiles of M and A, where M is log<sub>2</sub>(R/G) and A is 0.5 log<sub>2</sub>(RG) with R representing the gene expression level in cartilage and G representing the gene expression level in one of the other 10 tissues. Then we performed linear quantile regression to identify genes with a cartilage-restricted pattern of expression.</p
Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors
Gravitational waves deliver information in exquisite detail about
astrophysical phenomena, among them the collision of two black holes, a system
completely invisible to the eyes of electromagnetic telescopes. Models that
predict gravitational wave signals from likely sources are crucial for the
success of this endeavor. Modeling binary black hole sources of gravitational
radiation requires solving the Eintein equations of General Relativity using
powerful computer hardware and sophisticated numerical algorithms. This
proceeding presents where we are in understanding ground-based gravitational
waves resulting from the merger of black holes and the implications of these
sources for the advent of gravitational-wave astronomy.Comment: Appeared in the Proceedings of 2014 Sant Cugat Forum on Astrophysics.
Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin:
Springer-Verlag
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
It has long been recognized that aortic root elasticity helps to ensure
efficient aortic valve closure, but our understanding of the functional
importance of the elasticity and geometry of the aortic root continues to
evolve as increasingly detailed in vivo imaging data become available. Herein,
we describe fluid-structure interaction models of the aortic root, including
the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the
sinotubular junction, that employ a version of Peskin's immersed boundary (IB)
method with a finite element (FE) description of the structural elasticity. We
develop both an idealized model of the root with three-fold symmetry of the
aortic sinuses and valve leaflets, and a more realistic model that accounts for
the differences in the sizes of the left, right, and noncoronary sinuses and
corresponding valve cusps. As in earlier work, we use fiber-based models of the
valve leaflets, but this study extends earlier IB models of the aortic root by
employing incompressible hyperelastic models of the mechanics of the sinuses
and ascending aorta using a constitutive law fit to experimental data from
human aortic root tissue. In vivo pressure loading is accounted for by a
backwards displacement method that determines the unloaded configurations of
the root models. Our models yield realistic cardiac output at physiological
pressures, with low transvalvular pressure differences during forward flow,
minimal regurgitation during valve closure, and realistic pressure loads when
the valve is closed during diastole. Further, results from high-resolution
computations demonstrate that IB models of the aortic valve are able to produce
essentially grid-converged dynamics at practical grid spacings for the
high-Reynolds number flows of the aortic root
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Implications For The Origin Of GRB 051103 From LIGO Observations
We present the results of a LIGO search for gravitational waves (GWs)
associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst
(GRB) whose electromagnetically determined sky position is coincident with the
spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for
short-hard GRBs include compact object mergers and soft gamma repeater (SGR)
giant flares. A merger progenitor would produce a characteristic GW signal that
should be detectable at the distance of M81, while GW emission from an SGR is
not expected to be detectable at that distance. We found no evidence of a GW
signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission
with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81
as the progenitor with a confidence of 98%. Neutron star-black hole mergers are
excluded with > 99% confidence. If the event occurred in M81 our findings
support the the hypothesis that GRB 051103 was due to an SGR giant flare,
making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication,
go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see
the announcement for this paper on ligo.org at:
http://www.ligo.org/science/Publication-GRB051103/index.ph
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
- …