6,700 research outputs found

    Barriers and Incentives to the Commercialization of Solar Heating and Cooling of Buildings

    Get PDF
    This paper reviews potential barriers to the widespread use of solar heating and cooling systems in residential and commercial buildings. Although solar systems have been technologically proven and are used to a limited extent today, economic, institutional, and legal barriers may slow future commercialization. Consideration of incentives which might reduce these barriers raises the question of how to evaluate alternative policy question options

    Ischemic Heart Disease Incidence in Relation to Fine versus Total Particulate Matter Exposure in a U.S. Aluminum Industry Cohort.

    Get PDF
    Ischemic heart disease (IHD) has been linked to exposures to airborne particles with an aerodynamic diameter <2.5 μm (PM2.5) in the ambient environment and in occupational settings. Routine industrial exposure monitoring, however, has traditionally focused on total particulate matter (TPM). To assess potential benefits of PM2.5 monitoring, we compared the exposure-response relationships between both PM2.5 and TPM and incidence of IHD in a cohort of active aluminum industry workers. To account for the presence of time varying confounding by health status we applied marginal structural Cox models in a cohort followed with medical claims data for IHD incidence from 1998 to 2012. Analyses were stratified by work process into smelters (n = 6,579) and fabrication (n = 7,432). Binary exposure was defined by the 10th-percentile cut-off from the respective TPM and PM2.5 exposure distributions for each work process. Hazard Ratios (HR) comparing always exposed above the exposure cut-off to always exposed below the cut-off were higher for PM2.5, with HRs of 1.70 (95% confidence interval (CI): 1.11-2.60) and 1.48 (95% CI: 1.02-2.13) in smelters and fabrication, respectively. For TPM, the HRs were 1.25 (95% CI: 0.89-1.77) and 1.25 (95% CI: 0.88-1.77) for smelters and fabrication respectively. Although TPM and PM2.5 were highly correlated in this work environment, results indicate that, consistent with biologic plausibility, PM2.5 is a stronger predictor of IHD risk than TPM. Cardiovascular risk management in the aluminum industry, and other similar work environments, could be better guided by exposure surveillance programs monitoring PM2.5

    Incident Ischemic Heart Disease After Long-Term Occupational Exposure to Fine Particulate Matter: Accounting for 2 Forms of Survivor Bias.

    Get PDF
    Little is known about the heart disease risks associated with occupational, rather than traffic-related, exposure to particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5). We examined long-term exposure to PM2.5 in cohorts of aluminum smelters and fabrication workers in the United States who were followed for incident ischemic heart disease from 1998 to 2012, and we addressed 2 forms of survivor bias. Left truncation bias was addressed by restricting analyses to the subcohort hired after the start of follow up. Healthy worker survivor bias, which is characterized by time-varying confounding that is affected by prior exposure, was documented only in the smelters and required the use of marginal structural Cox models. When comparing always-exposed participants above the 10th percentile of annual exposure with those below, the hazard ratios were 1.67 (95% confidence interval (CI): 1.11, 2.52) and 3.95 (95% CI: 0.87, 18.00) in the full and restricted subcohorts of smelter workers, respectively. In the fabrication stratum, hazard ratios based on conditional Cox models were 0.98 (95% CI: 0.94, 1.02) and 1.17 (95% CI: 1.00, 1.37) per 1 mg/m(3)-year in the full and restricted subcohorts, respectively. Long-term exposure to occupational PM2.5 was associated with a higher risk of ischemic heart disease among aluminum manufacturing workers, particularly in smelters, after adjustment for survivor bias

    A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening

    Get PDF
    Understanding the processes that underlie pollen release is a prime target for controlling fertility to enable selective breeding and the efficient production of hybrid crops. Pollen release requires anther opening, which involves changes in the biomechanical properties of the anther wall. In this research, we develop and use a mathematical model to understand how these biomechanical processes lead to anther opening

    Complementary Replicas of Ultra-Rapidly Frozen Specimens

    Get PDF
    Complementary freeze-fracture replicas have been prepared of ultra-rapidly cooled specimens in the absence of chemical pretreatments. The grid-sized replicas were stabilized by open mesh gold grids during the cleaning process and, after cleaning, were supported on thin Formvar films. The complementary replicas were valuable for describing artifacts, for interpreting the nature of fracture planes and for evaluating the resolution of replicas. Complementary images demonstrated that heat emitted from resistance electrodes or electron guns during evaporation can seriously distort fracture surfaces even for samples held at -150°C. Complementary images of crystalline membranous cytochrome c oxidase helped establish that fracturing reveals hydrophilic surfaces. Complementary images of proteoliposomes showed that intramembrane particles produced by an integral 140kdal protein generated complementary pits whereas intramembrane particles produced by a smaller integral 46.5kdal protein did not. The inability to observe the small pits is in part a limitation of the resolution of conventionally prepared platinum/carbon replicas

    Absolute photoionization cross section measurements of the Kr I-isoelectronic sequence

    Get PDF
    Photoionization spectra have been recorded in the 4s, 4p and 3d resonance regions for the Kr Iisoelectronic sequence using both the dual laser produced plasma technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s − np resonances of Rb+ and Sr2+. Many new 4p " ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb+ and Sr2+ ions show preferential decay via double photoionization. This is only the second report where both the DLP technique and the merged beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e. better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged beam technique) are highlighted

    Reporting Expertise in Agricultural Communications, Education, Extension, and Leadership Research: The Development of an Expertise Rubric

    Get PDF
    This exploratory quantitative study assessed 149 behaviors, characteristics, and techniques considered indicative of expertise to determine what social scientists in Agricultural Communications, Education, Extension, and Leadership (ACEEL) disciplines value. A total of 731 social scientists from 25 land-grant universities across the United States surveyed in the fall of 2018 served as the population for this study. Using Principal Component Analysis (PCA), 10 constructs describing expertise were identified. A list of the 10 constructs was presented to faculty representing the ACEEL disciplines who helped determine what the constructs collectively measured, resulting in a label for each construct. The behaviors, characteristics, and techniques of the highest scoring constructs were used to create a rubric to assist social scientists in the systematic and intentional selection and description of the qualifications and expertise of individuals asked to serve as coders (Content Analysis), expert panelists (the Delphi method), and any contributor to social science studies in ACEEL disciplines. Use of the rubric would improve the overall consistency and transparency in how qualifications of expertise are reported in academic publications

    The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions

    Get PDF
    The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed

    The laboratory telerobotic manipulator program

    Get PDF
    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the NASA Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Laboratory Telerobotic Manipulator (LTM) program is performed to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research

    Analysis of the Thermodynamic Phase Transition of Tracked Convective Clouds Based on Geostationary Satellite Observations

    Get PDF
    Clouds are liquid at temperature greater than 0°C and ice at temperature below −38°C. Between these two thresholds, the temperature of the cloud thermodynamic phase transition from liquid to ice is difficult to predict and the theory and numerical models do not agree: Microphysical, dynamical, and meteorological parameters influence the glaciation temperature. We temporally track optical and microphysical properties of 796 clouds over Europe from 2004 to 2015 with the space‐based instrument Spinning Enhanced Visible and Infrared Imager on board the geostationary METEOSAT second generation satellites. We define the glaciation temperature as the mean between the cloud top temperature of those consecutive images for which a thermodynamic phase change in at least one pixel is observed for a given cloud object. We find that, on average, isolated convective clouds over Europe freeze at −21.6°C. Furthermore, we analyze the temporal evolution of a set of cloud properties and we retrieve glaciation temperatures binned by meteorological and microphysical regimes: For example, the glaciation temperature increases up to 11°C when cloud droplets are large, in line with previous studies. Moreover, the correlations between the parameters characterizing the glaciation temperature are compared and analyzed and a statistical study based on principal component analysis shows that after the cloud top height, the cloud droplet size is the most important parameter to determine the glaciation temperature
    corecore